Share This Article:

Low Pressure Chemical Vapor Deposition of Nb and F Co-Doped TiO2 Layer

Abstract Full-Text HTML XML Download Download as PDF (Size:1202KB) PP. 79-88
DOI: 10.4236/jcpt.2014.42011    3,637 Downloads   4,921 Views   Citations


Nb and F co-doped anatase TiO2 layers were deposited by low pressure chemical vapor deposition (LPCVD) at pressure of 3 mtorr using titanium-tetra-iso-propoxide (TTIP), O2 and NbF5 as precursor, oxidant and dopant respectively. Resistivity beyond 100 Ωcm for undoped layer was decreased with increasing supply of the dopant and dependent on the supply ratio of O2 to TTIP and decreased to 0.2 Ωcm by the optimization. X-ray fluorescent spectroscopy showed Nb-content in the layer was decreased with the O2-supply ratio. X-ray photo-spectroscopy indicated that F substituted O-site in TiO2 by O2-supply but carbon-contamination and F missing substitution in the O-site were significantly increased by excess O2-supply. Further, it was suggested that the substituted F played an important role to reduce resistivity without significant contribution of O-vacancies. XRD spectra showed F missing substitution in the O-site degraded the crystallinity.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Yamauchi, S. , Saiki, S. , Ishibashi, K. , Nakagawa, A. and Hatakeyama, S. (2014) Low Pressure Chemical Vapor Deposition of Nb and F Co-Doped TiO2 Layer. Journal of Crystallization Process and Technology, 4, 79-88. doi: 10.4236/jcpt.2014.42011.


[1] Assuncao, V., Fortunato, E., Marques, A., águas, H., Ferreira, I., Costa, M.E.V. and Martins, R. (2003) Influence of the Deposition Pressure on the Properties of Transparent and Conductive ZnO:Ga Thin-Film Produced by r.f. Sputtering at Room Temperature. Thin Solid Films, 427, 401-405.
[2] Lewis, B.G. and Paine, D.C. (2000) Applications and Processing of Transparent Conducting Oxides. MRS Bulletin, 25, 22-27.
[3] Wang, R., Hashimoto, K. and Fujishima, A. (1997) Light-Induced Amphiphilic Surfaces. Nature, 388, 431-432.
[4] Mills, A., Lepre, A., Elliott, N., Bhopal, A., Parkin, I.P. and Neill, S.A. (2003) Characterisation of the Photocatalyst Pilkington ActivTM: A Reference Film Photocatalyst? Journal of Photochemistry and Photobiology A: Chemistry, 160, 213-224.
[5] Campbell, S.A., Kim, H.S., Gilmer, D.C., He, B., Ma, T. and Gladfelter, W.L. (1999) Titanium Dioxide (TiO2)-Based Gate Insulators. IBM Journal of Research and Development, 43, 383-392.
[6] Martinet, C., Paillard, V., Gagnaire, A. and Joseph, J. (1997) Deposition of SiO2 and TiO2 Thin Films by Plasma Enhanced Chemical Vapor Deposition for Antireflection Coating. Journal of Non-Crystalline Solids, 216, 77-82.
[7] Hitosugi, T., Ueda, A., Furubayashi, Y., Hirose, Y., Konuma, S., Shimada, T. and Hasegawa, T. (2006) Fabrication of TiO2-Based Transparent Conducting Oxide Films on Glass by Pulsed Laser Deposition. Japanese Journal of Applied Physics, 46, L86-L88.
[8] Gillispie, M.A., van Hest, M.F.A.M., Dabney, M.S., Perkins, J.D. and Ginley, D.S. (2007) rf Magnetron Sputter Deposition of Transparent Conducting Nb-doped TiO2 Films on SrTiO3. Journal of Applied Physics, 101, 033125-1-4.
[9] Hoang, N.L., Yamada, N., Hitosugi, T., Kasai, J., Nakao, S., Shimada, T. and Hasegawa, T. (2008) Low-temperature Fabrication of Transparent Conducting Anatase Nb-doped TiO2 Films by Sputtering. Applied Physics Express, 1, 115001-115003.
[10] Di Valentin, C., Pacchioni, G. and Selloni, A. (2009) Reduced and n-Type Doped TiO2: Nature of Ti3+ Species. Journal of Physical Chemistry C, 113, 20543–20552.
[11] Li, D., Haneda, H., Hishita, S., Ohashia, N. and Labhsetwar, N.K. (2005) Fluorine-doped TiO2 Powders Prepared by Spray Pyrolysis and Their Improved Photocatalytic Activity for Decomposition of Gas-phase Acetaldehyde. Journal of Fluorine Chemistry, 126, 69-77.
[12] Di Valentin, C., Finazzi, E., Pacchioni, G., Selloni, A., Livraghi, S., Czoska, A.M., Paganini, M.C. and Giamello, E. (2008) Density Functional Theory and Electron Paramagnetic Resonance Study on the Effect of N-F Codoping of TiO2. Chemistry of Materials, 20, 3706-3714.
[13] Norasetthekul, S., Park, P.Y., Baik, K.H., Lee, K.P., Shin, J.H., Jeong, B.S., Shishodia, V., Lambers, E.S., Norton, D.P. and Pearton, S.J. (2001) Dry Etch Chemistries for TiO2 Thin Films. Applied Surface Science, 185, 27-33.
[14] Yang, W. and Wolden, C.A. (2006) Plasma-Enhanced Chemical Vapor Deposition of TiO2 Thin Films for Dielectric Applications. Thin Solid Films, 515, 1708-1713.
[15] Ahn, K.H., Park, Y.B. and Park, D.W. (2003) Kinetic and Mechanistic Study on the Chemical Vapor Deposition of Titanium Dioxide Thin Films by In Situ FT-IR using TTIP. Surface Coating and Technology, 171, 198-204.
[16] Yokozawa, M., Iwasa, H. and Teramoto, I. (1968) Vapor Deposition of TiO2. Japanese Journal of Applied Physics, 7, 96-97.
[17] Fictorie, C.P., Evans, J.F. and Gladfelter, W.L. (1994) Kinetic and Mechanistic Study of the Chemical Vapor Deposition of Titanium Dioxide Thin Films using Tetrakis-(Isopropoxo)-Titanium (IV). Journal of Vacuum Science & Technology A, 12, 1108-1113.
[18] Chen, S., Mason, M.G., Gysling, H.J., Paz-Pujalt, G.R., Blanton, T.N., Castro, T., Chen, K.M., Fictorie, C.P., Gladfelter, W.L., Franciosi, A., Cohen, P.I. and Evans, J.F. (1993) Ultrahigh Vacuum Metalorganic Chemical Vapor Deposition Growth and In Situ Characterization of Epitaxial TiO2 Films. Journal of Vacuum Science & Technology A, 11, 2419-2429.
[19] Karlsson, P.G., Richter, J.H., Andersson, M.P., Johansson, M.K.-J., Blomquist, J., Uvdal, P. and Sandell, A. (2011) TiO2 Chemical Vapor Deposition on Si(111) in Ultrahigh Vacuum: Transition from Interfacial Phase to Crystalline Phase in the Reaction Limited Regime. Surface Science, 605, 1147-1156.
[20] Schmidt, S., Goyenola, C., Gueorguiev, G.K., Jensen, J., Greczynski, G., Ivanov, I.G., Czigány, Zs. and Hultman, L. (2013) Reactive High Power Impulse Magnetron Sputtering of CFx Thin Films in Mixed Ar/CF4 and Ar/C4F8 Discharges. Thin Solid Films, 542, 21-30.
[21] Crassous, I., Groult, H., Lantelme, F., Devilliers, D., Tressaud, A., Labrugère, C., Dubois, M., Belhomme, C., Colisson, A. and Morel, B. (2009) Study of the Fluorination of Carbon Anode in Molten KF-2HF by XPS and NMR Investigations. Journal of Fluorine Chemistry, 130, 1080-1085.
[22] Liu, G., Sun, C., Cheng, L., Jin, Y., Lu, H., Wang, L., Smith, S.C., Lu, G.Q. and Cheng, H.-M. (2009) Efficient Promotion of Anatase TiO2 Photocatalysis via Bifunctional Surface-Terminating Ti-O-B-N Structures. The Journal of Physical Chemistry C, 113, 12317-12324.
[23] Chiang, C.Y., Reddy, M.J. and Chu, P.P. (2004) Nano-Tube TiO2 Composite PVdF/LiPF6 Solid Membranes. Solid State Ionics, 175, 631-635.
[24] Yang, G., Wang, T., Yang, B., Yan, Z., Ding, S. and Xiao, T. (2013) Enhanced Visible-Light Activity of F-N Co-Doped TiO2 Nanocrystals via Nonmetal Impurity, Ti3+ Ions and Oxygen Vacancies. Applied Surface Science, 287, 135-142.
[25] Li, Y., Jiang, Y., Peng, S. and Jiang, F. (2010) Nitrogen-Doped TiO2 Modified with NH4F for Efficient Photocatalytic Degradation of Formaldehyde under Blue Light-Emitting Diodes. Journal of Hazardous Materials, 182, 90-96.
[26] Fan, J.C.C. and Goodenough, J.B. (1977) X-Ray Photoemission Spectroscopy Studies of Sn-Doped Indium-Oxide Films. Journal of Applied Physics, 4B, 3524-3531.
[27] Sato, Y., Akizuki, H., Kamiyama, T. and Shigesato, Y. (2008) Transparent Conductive Nb-Doped TiO2 Films Deposited by Direct-Current Magnetron Sputtering using a TiO2-x Target. Thin Solid Films, 516, 5758-5762.
[28] Yu, C.-F., Sun, S.-J. and Chen, J.-M. (2014) Magnetic and Electrical Properties of TiO2:Nb Thin Films. Applied Surface Science, 292, 773-776.
[29] Weisssmann, S., et al. (1978) Selected Powder Diffraction Data for Metals and Alloys. JCPDS, Card No. 21-1272, 263.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.