Share This Article:

Vortex Field Propagation in a Hexagonal Multicore Fiber Array

DOI: 10.4236/opj.2014.41001    4,395 Downloads   6,032 Views   Citations

ABSTRACT

The propagation of an optical vortex in a hexagonally arranged single mode multicore fiber structure is investigated for possible generation of additional vortices and their spread dynamics. Fields are separated into a slowly varying paraxial envelope and a rapidly changing exponential component. Solutions are derived from the paraxial inhomogeneous Schrodinger equation in two dimensions along with the index of refraction of the proposed structure. Numerical analyses are based on the beam propagation method and transparent boundary conditions in matrix form with different parameters to represent the intensity and phase of all derived fields. Vortices are numerically identified by their points of zero intensity and their phase change or polarity. The optical interferogram with a plane wave reference is also employed to distinguish the dislocation points in the transverse directions of the propagating fields.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

M. Mushref, "Vortex Field Propagation in a Hexagonal Multicore Fiber Array," Optics and Photonics Journal, Vol. 4 No. 1, 2014, pp. 1-7. doi: 10.4236/opj.2014.41001.

References

[1] D. N. Christodoulides, F. Lederer and Y. Silberberg, “Discretizing Light Behavious in Linear and Nonlinear Waveguide Lattices,” Nature, Vol. 424, No. 6950, 2003, pp. 817-823. http://dx.doi.org/10.1038/nature01936
[2] J. Demas, M. D. W. Grogan, T. Alkeskjold and S. Ramachandran, “Sensing with Optical Vortices in Photonic-Crystal Fibers,” Optics Letters, Vol. 37, No. 18, 2012, pp. 3768-3770. http://dx.doi.org/10.1364/OL.37.003768
[3] C. Law, X. Zhang and G. Swartzlander Jr., “Waveguiding Properties of Optical Vortex Solitons,” Optics Letters, Vol. 25, No. 1, 2000, pp. 55-57.
http://dx.doi.org/10.1364/OL.25.000055
[4] A. Buryak and N. Akhmediev, “Stationary Pulse Propagation in N-Core Nonlinear Fiber Arrays,” IEEE Journal of Quantum Electronics, Vol. 31, No. 4, 1995, pp. 682-688. http://dx.doi.org/10.1109/3.371943
[5] J. K. Yang and Z. H. Musslimani, “Fundamental and Vortex Solitons in a Two-Dimensional Optical Lattice,” Optics Letters, Vol. 28, No. 21, 2003, pp. 2094-2096.
http://dx.doi.org/10.1364/OL.28.002094
[6] T. J. Alexander, A. A. Sukhorukov and Y. S. Kivshar, “Asymmetric Vortex Solitons in Nonlinear Periodic Lattices,” Physical Review Letters, Vol. 93, No. 6, 2004, pp. 63901-63905.
http://dx.doi.org/10.1103/PhysRevLett.93.063901
[7] D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, H. Martin, I. Makasyuk and Z. G. Chen, “Observation of Discrete Vortex Solitons in Optically Induced Photonic Lattices,” Physical Review Letters, Vol. 92, No. 12, 2004, pp. 123903-123906.
http://dx.doi.org/10.1103/PhysRevLett.92.123903
[8] Z. G. Chen, H. Martin and A. Bezryadina, “Experiments on Gaussian Beams and Vortices in Optically Induced Photonic Lattices,” Journal of the Optical Society of America B, Vol. 22, No. 7, 2005, pp. 1395-1405.
http://dx.doi.org/10.1364/JOSAB.22.001395
[9] M. I. Rodas-Verde and H. Michinel, “Dynamics of Vector Solitons and Vortices in Two-Dimensional Photonic Lattices,” Optics Letters, Vol. 31, No. 5, 2006, pp. 607-609.
http://dx.doi.org/10.1364/OL.31.000607
[10] B. Terhalle, T. Richter, A. S. Desyatnikov, D. N. Neshev, W. Krolikowski, F. Kaiser, C. Denz and Y. S. Kivshar, “Observation of Multivortex Solitons in Photonic Lattices,” Physical Review Letters, Vol. 101, No. 1, 2008, pp. 13903-13906.
http://dx.doi.org/10.1103/PhysRevLett.101.013903
[11] B. Terhalle, T. Richter, K. J. H. Law, D. Gories, P. Rose, T. J. Alexander, P. G. Kerekidis, A. S. Desyatnikov, W. Krolikowski, F. Kaiser, C. Denz and Y. S. Kivshar, “Observation of Double-Charge Discrete Vortex Solitons in Hexagonal Photonic Lattices,” Physical Review A, Vol. 79, No. 4, 2009, pp. 43821-43829.
http://dx.doi.org/10.1103/PhysRevA.79.043821
[12] K. J. H. Law and P. G. Kevrekidis, “Stable Higher-Charge Discrete Vortices in Hexagonal Optical Lattices,” Physical Review A, Vol. 79, No. 2, 2009, pp. 25801-25805.
http://dx.doi.org/10.1103/PhysRevA.79.025801
[13] C.-S. Hsiao, L. Wang and Y. J. Chiang, “An Algorithm for Beam Propagation Method in Matrix Form,” IEEE Journal of Quantum Electronics, Vol. 46, No. 3, 2010, pp. 332-339. http://dx.doi.org/10.1109/JQE.2009.2029066
[14] S. A. Shakir, R. A. Motes and R. W. Berdine, “Efficient Scalar Beam Propagation Method,” IEEE Journal of Quantum Electronics, Vol. 47, No. 4, 2011, pp. 486-491.
http://dx.doi.org/10.1109/JQE.2010.2091395
[15] D. Jimenez and F. Perez-Murano, “Improved Boundary Conditions for the Beam Propagation Method,” IEEE Photonics Technology Letters, Vol. 11, No. 8, 1999, pp. 1000-1002. http://dx.doi.org/10.1109/68.775326
[16] K. Okamoto, “Fundamentals of Optical Waveguides,” Elsevier Inc., Maryland Heights, 2006.
[17] B. Saleh and M. Teich, “Fundamentals of Photonics,” John Wiley & Sons, Inc., Hoboken, 2007.
[18] G. P. Karman, M. W. Beijersbergen, A. van Duijl and J. P. Woerdman, “Creation and Annihilation of Phase Singularities in a Focal Field,” Optics Letters, Vol. 22, No. 19, 1997, pp. 1503-1505.
http://dx.doi.org/10.1364/OL.22.001503

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.