Share This Article:

Angiogenesis in Rat Uterine Scar after Introduction af Autological Mesenchymal Stem Cells of Bone Marrow Origin

Abstract Full-Text HTML Download Download as PDF (Size:8973KB) PP. 164-172
DOI: 10.4236/jbise.2011.43023    3,381 Downloads   6,723 Views   Citations

ABSTRACT

The results of injecting of autologic mesenchymal stem cells of bone marrow origin (AMSCBMO), transfected by the GFP gene, into the scar of rat uterine horns were studied by methods of light microscopy. After the introduction of AMSCBMO into the formed scar on the right (2 months after the ligation) large groups of blood vessels with cellular elements inside were present; groups like that were not found in the opposite side. Studying unstained sections under reflected ultraviolet light the sufficient bright luminescence in the endothelium and the external membrane of scar vessels was found in uterine horn only on the side of introduction of AMSCBMO. It was concluded that after the introduction of AMSCBMO into the scar tissue they form blood vessels by differentiation into endotheliocytes and pericytes. GFP gene expression not only in endothelium of vessels, but also in their external membrane indicates that differentiation of AMSCMBO is possible in endothelial and in pericytal directions.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Maiborodin, I. , Yakimova, N. , Matveeva, V. , Shevela, A. , Maiborodina, E. , Pekareva, E. and Tkachuk, O. (2011) Angiogenesis in Rat Uterine Scar after Introduction af Autological Mesenchymal Stem Cells of Bone Marrow Origin. Journal of Biomedical Science and Engineering, 4, 164-172. doi: 10.4236/jbise.2011.43023.

References

[1] Campagnoli, C., Roberts, I.A., Kumar, S., Bennett, P.R., Bellantuono, I. and Fisk, N.M. (2001) Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood, 98, 2396-2402. doi:10.1182/blood.V98.8.2396
[2] Huss, R. (2000) Isolation of primary and immortalized CD34-hematopoietic and mesenchymal stem cells from various sources. Stem Cells, 18, 1-9. doi:10.1634/stemcells.18-1-1
[3] Isner, J.M. (2000) Tissue responses to ischemia: Local and remote responses for preserving perfusion of ischemic muscle. The Journal of Clinical Investigation, 106, 615-619. doi:10.1172/JCI10961
[4] Fukushima, S., Varela-Carver, A., Coppen, S.R., Yamahara, K., Felkin, L.E., Lee, J., Barton, P.J., Terracciano, C.M., Yacoub, M. H. and Suzuki, K. (2007) Direct intramyocardial but not intracoronary injection of bone marrow cells induces ventricular arrhythmias in a rat chronic ischemic heart failure model. Circulation, 115, 2254-2261. doi:10.1161/CIRCULATIONAHA.106.662577
[5] Grauss, R.W., Winter, E.M., van Tuyn, J., Pijnappels, D.A., Steijn, R.V., Hogers, B., van der Geest, R.J., de Vries, A.A., Steendijk, P., van der Laarse, A., Gittenberger- de Groot, A.C., Schalij, M.J. and Atsma, D.E. (2007) Mesenchymal stem cells from ischemic heart disease patients improve left ventricular function after acute myocardial infarction. American Journal of Physiology. Heart and Circulatory Physiology, 293, H2438-H2447. doi:10.1152/ajpheart.00365.2007
[6] Jackson, K.A., Majka, S.M., Wang, H., Pocius, J., Hartley, C.J., Majesky, M.W., Entman, M.L., Michael, L.H., Hirschi, K.K. and Goodell, M.A. (2001) Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. The Journal of Clinical Investigation, 107, 1395-1402. doi:10.1172/JCI12150
[7] Kocher, A.A., Schuster, M.D., Szabolcs, M.J., Takuma, S., Burkhoff, D., Wang, J., Homma, S., Edwards, N.M. and Itescu, S. (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nature Medicine, 7, 430-436. doi:10.1038/86498
[8] Kamihata, H., Matsubara, H., Nishiue, T., Fujiyama, S., Tsutsumi, Y., Ozono, R., Masaki, H., Mori, Y., Iba, O., Tateishi, E., Kosaki, A., Shintani, S., Murohara, T., Imaizumi, T. and Iwasaka, T. (2001) Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation, 104, 1046- 1052. doi:10.1161/hc3501.093817
[9] Takahashi, M., Li, T.S., Suzuki, R., Kobayashi, T., Ito, H., Ikeda, Y., Matsuzaki, M. and Hamano, K. (2006) Cytokines produced by bone marrow cells can contribute to functional improvement of the infarcted heart by protecting cardiomyocytes from ischemic injury. American Journal of Physiology. Heart and Circulatory Physiology, 291, H886-H893. doi:10.1152/ajpheart.00142.2006
[10] Rota, M., Padin-Iruegas, M.E., Misao, Y., de Angelis, A., Maestroni, S., Ferreira-Martins, J., Fiumana, E., Rastaldo, R., Arcarese, M.L., Mitchell, T.S., Boni, A., Bolli, R., Urbanek, K., Hosoda, T., Anversa, P., Leri, A. and Kajstura, J. (2008) Local activation or implantation of cardiac progenitor cells rescues scarred infarcted myocardium improving cardiac function. Circulation Research, 103, 107-116. doi:10.1161/CIRCRESAHA.108.178525
[11] Dimmelerm, S. and Leri, A. (2008) Aging and disease as modifiers of efficacy of cell therapy. Circulation Research, 102, 1319-1330. doi:10.1161/CIRCRESAHA.108.175943
[12] Hu, X., Yu, S.P., Fraser, J.L., Lu, Z., Ogle, M.E., Wang, J.A. and Wei, L. (2008) Transplantation of hypoxia- preconditioned mesenchymal stem cells improves infarcted heart function via enhanced survival of implanted cells and angiogenesis. The Journal of Thoracic and Cardiovascular Surgery, 135, 799-808. doi:10.1016/j.jtcvs.2007.07.071
[13] Maiborodin, I.V., Maiborodina, E.I., Iakimova, N.V., Motorina, I.P. and Pekarev, O.G. (2008) Absorbable suture material in the body. Arkhiv Patologii, 70, 51-53.
[14] Carmeliet, P. and Luttun, A. (2001) The emerging role of the bone marrow-derived stem cells in (therapeutic) angiogenesis. Thrombosis and Haemostasis, 86, 289-297.
[15] Shi, Q., Wu, M.H., Hayashida, N., Wechezak, A.R., Clowes, A.W. and Sauvage, L.R. (1994) Proof of fallout endothelialization of impervious dacron grafts in the aorta and inferior vena cava of the Dog. Journal of Vascular Surgery, 20, 546-557.
[16] Shi, Q., Rafii, S., Wu, M.H., Wijelath, E.S., Yu, C., Ishida, A., Fujita, Y., Kothari, S., Mohle, R., Sauvage, L.R., Moore, M.A., Storb, R.F. and Hammond, W.P. (1998) Evidence for circulating bone marrow-derived endothelial cells. Blood, 92, 362-367.
[17] Carmeliet, P. and Jain, R.K. (2000) Angiogenesis in cancer and other diseases. Nature, 407, 249-257. doi:10.1038/35025220
[18] Poole, J.C., Sabiston Jr, D.C., Florey, H.W. and Allison, P.R. (1962) Growth of endothelium in arterial prosthetic grafts and following endarterectomy. Surgical Forum, 13, 225-227.
[19] Stump, M.M., Jordan Jr, G.L., Debakey M.E. and Halpert, B. (1963) Endothelium grown from circulating blood on isolated intravascular dacron hub. The American Journal of Pathology, 43, 361-367.
[20] Bergers, G. and Song, S. (2005) The role of pericytes in blood-vessel formation and maintenance. Neuro-Oncology, 7, 452-464. doi:10.1215/S1152851705000232
[21] Carmeliet, P. (2004) Manipulating angiogenesis in medicine. Journal of Internal Medicine, 255, 538-561. doi:10.1111/j.1365-2796.2003.01297.x
[22] Cho, H., Kozasa, T., Bondjers, C., Betsholtz, C. and Kehrl, J.H. (2003) Pericyte-specific expression of rgs5: implications for PDGF and EDG receptor signaling during vascular maturation,” The FASEB Journal, 17, 440-442.
[23] Ribatti, D., Vacca, A., Nico, B., Ria, R. and Dammacco, F. (2002) Cross-talk between hematopoiesis and angiogenesis signaling pathways. Current Molecular Medicine, 2, 537-543. doi:10.2174/1566524023362195
[24] Creazzo, T.L., Godt, R.E., Leatherbury, L., Conway, S.J. and Kirby, M.L. (1998) Role of cardiac neural crest cells in cardiovascular development. Annual Review of Physiology, 60, 267-286. doi:10.1146/annurev.physiol.60.1.267
[25] Hellstr?m, M., Kalén, M., Lindahl, P., Abramsson, A. and Betsholtz, C. (1999) Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development, 126, 3047- 3055.
[26] Gittenberger-de Groot, A.C., DeRuiter, M.C., Bergwerff, M. and Poelmann, R.E. (1999) Smooth muscle cell origin and its relation to heterogeneity in development and disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 19, 1589-1594.
[27] Nakajima, Y., Mironov, V., Yamagishi, T., Nakamura, H. and Markwald, R.R. (1997) Expression of smooth muscle alpha-actin in mesenchymal cells during formation of avian endocardial cushion tissue: a role for transforming growth factor beta3. Developmental Dynamics, 209, 296-309. doi:10.1002/(SICI)1097-0177(199707)209:3<296::AID-AJA5>3.0.CO;2-D
[28] Tsuji, T. and Sawabe, M. (1988) Elastic fibers in striae distensae. Journal of Cutaneous Pathology, 15, 215-222. doi:10.1111/j.1600-0560.1988.tb00547.x

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.