Share This Article:

Microwave-Assisted Modification of Carbon Nanotubes with Biocompatible Polylactic Acid

Abstract Full-Text HTML Download Download as PDF (Size:418KB) PP. 7-12
DOI: 10.4236/msce.2014.21002    6,169 Downloads   8,749 Views   Citations

ABSTRACT

Polylactic acid (PLA) was successfully covalently grafted onto multi-walled carbon nanotubes (MWCNT) by microwave-assisted polymerization of lactide monomers. The final products MWCNT-g-PLA were characterized with Fourier-transform IR (FTIR), Raman spectroscopy, thermogravimetric analyses (TGA) and transmission electron microscopy (TEM). The results indicated PLA chain was covalently attached to the MWCNT. The grafted PLA was uniformly coated on the surface of MWCNT with a layer thickness of 2 ~ 6 nm. The grafted PLA content could be controlled by microwave irradiation time and the concentrations of reactant. The product with 60.5% grafted PLA content can be synthesized in one hour.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Zhang, Q. , Zhang, S. and Zhang, L. (2014) Microwave-Assisted Modification of Carbon Nanotubes with Biocompatible Polylactic Acid. Journal of Materials Science and Chemical Engineering, 2, 7-12. doi: 10.4236/msce.2014.21002.

References

[1] S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature, Vol. 354, No. 6348, 1991, pp. 56-58. http://dx.doi.org/10.1038/354056a0
[2] Y. P. Sun, K. F. Fu, Y. Lin and W. I. Huang, “Functionalized Carbon Nanotubes: Properties and Applications,” Accounts of Chemical Research, Vol. 35, No. 12, 2002, pp. 1096-1104. http://dx.doi.org/10.1021/ar010160v
[3] P. J. F. Harris, “Carbon Nanotube Composites,” International Materials Reviews, Vol. 49, No. 1, 2004, pp. 31-43. http://dx.doi.org/10.1179/095066004225010505
[4] F. J. Gomez, R. J. Chen, D. Wang, R. M. Waymouth and H. Dai, “Ring Opening Metathesis Polymerization on Non-Covalently Functionalized Single-Walled Carbon Nanotubes,” Chemical Communications, Vol. 2, 2003, pp. 190-191. http://dx.doi.org/10.1039/b211194b
[5] R. Andrews and M. C. Weisenberger, “Carbon Nanotube Polymer Composites,” Current Opinion in Solid State and Materials Science, Vol. 8, No. 1, 2004, pp. 31-37. http://dx.doi.org/10.1016/j.cossms.2003.10.006
[6] G.-X. Chen, H.-S. Kim, B. H. Park and J.-S. Yoon, “Multi-Walled Carbon Nanotubes Reinforced Nylon 6 Composites,” Polymer, Vol. 47, No. 13, 2006, pp. 4760-4767. http://dx.doi.org/10.1016/j.polymer.2006.04.020
[7] Q. Xiao, S. He, L. Liu, X. Guo, K. Shi, Z. Du, et al., “Coating of Multiwalled Carbon Nanotubes with Cross-linked Silicon-Containing Polymer,” Composites Science and Technology, Vol. 68, No. 1, 2008, pp. 321-328. http://dx.doi.org/10.1016/j.compscitech.2006.09.001
[8] Y. H. Xu, Q. F. Li, D. Sun, W. J. Zhang and G. X. Chen, “A Strategy To Functionalize the Carbon Nanotubes and the Nanocomposites Based on Poly(l-lactide),” Industrial & Engineering Chemistry Research, Vol. 51, No. 42, 2012, pp. 13648-13654. http://dx.doi.org/10.1021/ie300989w
[9] C. Bartholome, P. Miaudet, A. Derré, M. Maugey, O. Roubeau, C. Zakri, et al., “Influence of Surface Function- alization on the Thermal and Electrical Properties of Nanotube-PVA Composites,” Composites Science and Technology, Vol. 68, No. 12, 2008, pp. 2568-2573. http://dx.doi.org/10.1016/j.compscitech.2008.05.021
[10] R. D. Farahani, H. Dalir, V. Le Borgne, L. A. Gautier, M. A. El Khakani, M. Lévesque, et al., “Reinforcing Epoxy Nanocomposites with Functionalized Carbon Nanotubes via Biotin-Streptavidin Interactions,” Composites Science and Technology, Vol. 72, No. 12, 2012, pp. 1387-1395. http://dx.doi.org/10.1016/j.compscitech.2012.05.010
[11] X. Y. Gong, J. Liu, S. Baskaran, R. D. Voise and J. S. Young, “Surfactant-Assisted Processing of Carbon Nanotube/Polymer Composites,” Chemistry of Materials, Vol. 12, No. 4, 2000, pp. 1049-1052. http://dx.doi.org/10.1021/cm9906396
[12] C. Richard, F. Balavoine, P. Schultz, T. W. Ebbesen and C. Mioskowski, “Supramolecular Self-Assembly of Lipid Derivatives on Carbon Nanotubes,” Science, Vol. 300, No. 5620, 2003, pp. 775-778. http://dx.doi.org/10.1126/science.1080848
[13] Q. Wang, Y. Han, Y. Wang, Y. Qin and Z.-X. Guo, “Effect of Surfactant Structure on the Stability of Carbon Nanotubes in Aqueous Solution,” The Journal of Physical Chemistry B, Vol. 112, No. 24, 2008, pp. 7227-7233. http://dx.doi.org/10.1021/jp711816c
[14] M. N. Zhang, L. Su and L. Q. Mao, “Surfactant Functionalization of Carbon Nanotubes (CNTs) for Layer-by- Layer Assembling of CNT Multi-Layer Films and Fabri- cation of Gold Nanoparticle/CNT Nanohybrid,” Carbon, Vol. 44, No. 2, 2006, pp. 276-283. http://dx.doi.org/10.1016/j.carbon.2005.07.021
[15] H. J. Barraza, F. Pompeo, E. A. O’Rea and D. E. Resasco, “SWNT-Filled Thermoplastic and Elastomeric Composites Prepared by Miniemulsion Polymerization,” Nano Letters, Vol. 2, No. 8, 2002, pp. 797-802. http://dx.doi.org/10.1021/nl0256208
[16] M. J. O'Connell, P. Boul, L. M. Ericson, C. Huffman, Y. Wang, E. Haroz, et al., “Reversible Water-Solubilization of Single-Walled Carbon Nanotubes by Polymer Wrapping,” Chemical Physics Letters, Vol. 342, No. 3-4, 2001, pp. 265-271. http://dx.doi.org/10.1016/S0009-2614(01)00490-0
[17] H. J. Li, X. B. Wang, Y. L. Song, Y. Q. Liu, Q. S. Li, L. Jiang, et al., “Super-Amphiphobic Aligned Carbon Nanotube Films,” Angewandte Chemie International Edition, Vol. 40, No. 9, 2001, pp. 1743-1746. http://dx.doi.org/10.1002/1521-3773(20010504)40:9<1743::AID-ANIE17430>3.0.CO;2-#
[18] A. Kowalski, A. Duda and S. Penczek, “Kinetics and Mechanism of Cyclic Esters Polymerization Initiated with Tin(II) Octoate. 3.? Polymerization of l,l-Dilactide,” Macromolecules, Vol. 33, No. 20, 2000, pp. 7359-7370. http://dx.doi.org/10.1021/ma000125o
[19] V. Ambrogi, G. Gentile, C. Ducati, M. C. Oliva and C. Carfagna, “Multiwalled Carbon Nanotubes Functionalized with Maleated Poly(propylene) by a Dry Mechano-Chemical Process,” Polymer, Vol. 53, No. 2, 2012, pp. 291-299. http://dx.doi.org/10.1016/j.polymer.2011.11.048
[20] A. N. Chakoli, J. Wan, J. T. Feng, M. Amirian, J. H. Sui and W. Cai, “Functionalization of Multiwalled Carbon Nano-tubes for Reinforcing of Poly(l-lactide-co-?-capro-lactone) Biodegradable Copolymers,” Applied Surface Science, Vol. 256, No. 1, 2009, pp. 170-177. http://dx.doi.org/10.1016/j.apsusc.2009.07.103
[21] J. Feng, W. Cai, J. Sui, Z. Li, J. Wan and A. N. Chakoli, “Poly(l-lactide) Brushes on Magnetic Multiwalled Carbon Nanotubes by In-Situ Ring-Opening Polymerization,” Polymer, Vol. 49, No. 23, 2008, pp. 4989-4994. http://dx.doi.org/10.1016/j.polymer.2008.09.022
[22] H. X. Xu, X. B. Wang, Y. F. Zhang and S. Y. Liu, “Single-Step in Situ Preparation of Polymer-Grafted Multi-Walled Carbon Nanotube Composites under 60Co ?-Ray Irradiation,” Chem Mater Vol. 18, No. 13, 2006, pp. 2929-2934. http://dx.doi.org/10.1021/cm052840o
[23] S. M. Chen, G. Z. Wu, Y. D. Liu and D. W. Long, “Preparation of Poly(acrylic acid) Grafted Multiwalled Carbon Nanotubes by a Two-Step Irradiation Technique,” Ma-cromolecules, Vol. 39, No. 1, 2006, pp. 330-334. http://dx.doi.org/10.1021/ma0520500
[24] J. Lunt, “Large-Scale Production, Properties and Commercial Applications of Polylactic Acid Polymers,” Polymer Degradation and Stability, Vol. 59, No. 1-3, 1998, pp. 145-152. http://dx.doi.org/10.1016/S0141-3910(97)00148-1
[25] R. E. Drumright, P. R. Gruber, D. E. Henton, “Polylactic Acid Technology,” Advanced Materials, Vol. 12, No. 23, 2000, pp. 1841-1846. http://dx.doi.org/10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E
[26] G.-X. Chen, H.-S. Kim, B. H. Park and J.-S. Yoon, “Controlled Functiona-lization of Multiwalled Carbon Nanotubes with Various Molecular-Weight Poly(l-lactic acid),” The Journal of Physical Chemistry B, Vol. 109, No. 47, 2005, pp. 22237-22243. http://dx.doi.org/10.1021/jp054768n
[27] G.-X. Chen, H.-S. Kim, B. H. Park and J.-S. Yoon, “Synthesis of Poly(L-lactide)-Functionalized Multiwalled Carbon Nanotubes by Ring-Opening Polymerization,” Macromolecular Chemistry and Physics, Vol. 208, No. 4, 2007, pp. 389-398. http://dx.doi.org/10.1002/macp.200600411
[28] W. Song, Z. Zheng, W. Tang and X. Wang, “A Facile Approach to Covalently Functionalized Carbon Nano- tubes with Biocompatible Polymer,” Polymer, Vol. 48, No. 13, 2007, pp. 3658-3663. http://dx.doi.org/10.1016/j.polymer.2007.04.071
[29] J. T. Yoon, S. C. Lee and Y. G. Jeong, “Effects of Grafted Chain Length on Mechanical and Electrical Properties of Nanocomposites Containing Polylactide-Grafted Carbon Nanotubes,” Composites Science and Technology, Vol. 70, No. 5, 2010, pp. 776-782. http://dx.doi.org/10.1016/j.compscitech.2010.01.011

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.