Share This Article:

Family and/or Friends? Gene Mapping at Crossroads

Abstract Full-Text HTML XML Download Download as PDF (Size:534KB) PP. 112-118
DOI: 10.4236/ajps.2014.51014    2,956 Downloads   4,512 Views   Citations


Mapping gene(s) underlying a specific trait offers an opportunity to plant breeders to apply marker assisted selection. All gene mapping approaches except LD mapping use family based segregation populations developed by crossing two or more parents. These family based gene mapping approaches include simple interval mapping, composite interval mapping, multiple interval mapping and Bayesian mapping etc. Each approach has its own advantages and disadvantages based on type of population and underlying statistical model. Unlike family based approaches, LD mapping uses population of unrelated individuals which are like friends belonging to different family backgrounds. Relative pros and cons of family and friends based approaches make them complementary to each other. Family based approaches identify wide chromosomal region underlying the trait of interest with relatively lower markers density, and therefore, have low mapping resolution. Conversely, friends based LD mapping identifies chromosomal region of interest with higher resolution using higher marker density. The integration of family and friends based approaches addresses their respective pros and cons successfully to enhance mapping resolution for more valid application of marker assisted selection.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

M. Sajjad, S. Khan and R. Rana, "Family and/or Friends? Gene Mapping at Crossroads," American Journal of Plant Sciences, Vol. 5 No. 1, 2014, pp. 112-118. doi: 10.4236/ajps.2014.51014.


[1] M. Sajjad, S. H. Khan and A. S. Khan, “Exploitation of Germplasm for Grain Yield Improvement in Spring Wheat (Triticumaestivum),” International Journal of Agriculture and Biology, Vol. 13, No. 5, 2011, pp. 695-700.
[2] M. Akbari, P. Wenzl, V. Caig, J. Carling, L. Xia, S. Yang, G. Uszynski, V. Mohler, A. Lehmensiek, H. Kuchel, M. J. Hayden, N. Howes, P. Sharp, P. Vaughan and B. Rathmell, “Diversity Arrays Technology (DArT) for High-Throughput Profiling of the Hexaploid Wheat Genome,” Theoretical and Applied Genetics, Vol. 113, No. 8, 2006, pp. 1409-1420.
[3] P. A. Peterson, “Quantitative Inheritance in the Era of Molecular Biology,” Maydica, Vol. 37, 1992, pp. 7-18.
[4] H. Geldermann, “Investigations on Inheritance of Quantitative Characters in Animals by Gene Markers. I. Methods,” Theoretical and Applied Genetics, Vol. 46, 1975, pp. 319-330.
[5] Y. Xu, “Molecular Plant Breeding,” CAB International, USA, 2010.
[6] R. Wu, C. Ma and G. Casella, “Statistical Genetics of Quantitative Traits: Linkage, Maps and QTL,” Statistics for Biology and Health, Springer, Berlin, 2007.
[7] D. Sorensen and D. Gianola, “Likelihood, Bayesian and MCMC Methods in Quantitative Genetics,” Springer-Verlag Inc., New York, 2002.
[8] B. H. Liu, “Statistical Genomics: Linkage, Mapping and QTL Analysis,” CRC Press, Boca Baton, 1998, p. 611.
[9] M. Lynch and B. Walsh, “Genetics and Analysis of Quantitative Traits,” Sinauer Associates, Sunderland, 1998, p. 980.
[10] M. D. Edwards, C. W. Stuber and J. F. C. Wendel, “Molecular Marker Facilitated Investigations of Quantitative trait Loci in Maize,” Genetics, Vol. 116, 1987, pp. 113-125.
[11] E. S. Lander and D. Botstein, “Mapping Mendelian Factors Underlying Quantitative Traits Using RFLPlinkage Maps,” Genetics, Vol. 121, 1989, pp. 185-199.
[12] Z. B. Zeng, “Precision Mapping of Quantitative Trait Loci,” Genetics, Vol. 136, 1994, pp. 1457-1468.
[13] O. Martinez and R. N. Curnow, “Estimating the Locations and the Sizes of the Effects of Quantitative Trait Loci Using Flanking Markers,” Theoretical and Applied Genetics, Vol. 85, 1992, pp. 480-488.
[14] J. M. Satagopan, B. S. Yandell, M. A. Newton and T. G. Osborn, “A Bayesian Approach to Detect Quantitative Trait Loci Using Markov Chain Monte Carlo,” Genetics, Vol. 144, 1996, pp. 805-816.
[15] C. H. Kao and Z. B. Zeng, “General Formulas for Obtaining the MLEs and the Asymptotic Variance-Covariance Matrix in Mapping Quantitative Trait Loci When Using the EM Algorithm,” Biometrics, Vol. 53, 1997, pp. 653-665.
[16] S. Sen and G. A. Churchill, “A Statistical Framework for Quantitative Trait Mapping,” Genetics, Vol. 159, 2001, pp. 371-387.
[17] D. Malakoff, “Bayes Offers a ‘New’ Way to Make Sense of Numbers,” Science, Vol. 286, 1999, pp. 1460-1464.
[18] S. Xu, “QTL Analysis in Plants,” In: N. J. Camp and A. Cox, Eds., Methods in Molecular Biology, Vol. 195, Quantitative Trait Loci: Methods and Protocols, Humana Press, Totowa, 2002, pp. 283-310.
[19] A. Grupe, S. Germer, J. Usuka, D. Aud, J. K. Belknap, R. F. Klein, M. K. Ahluwalia, R. Higuchi and G. Peltz, “In Silico Mapping of Complex Disease-Related Traits in Mice,” Science, Vol. 292, 2001, pp. 1915-1918.
[20] I. Mackay and W. Powell, “Methods for Linkage Disequilibrium Mapping in Crops,” Trends in Plant Science, Vol. 12, No. 2, 2007, pp. 57-63.
[21] S. A. Flint-Garcia, J. M. Thornsberry and E. S. Buckler, “Structure of Linkage Disequilibrium in Plants,” Annual Review of Plant Biology, Vol. 54, 2003, pp. 357-374.
[22] P. K. Gupta, S. Rustgi and P. L. Kulwal, “Linkage Disequilibrium and Association Studies in Higher Plants: Present Status and Future Prospects,” Plant Molecular Biology, Vol. 57, No. 4, 2005, pp. 461-485.
[23] B. Stich, H. P. Maurer, A. E. Melchinger, M. Frisch, M. Heckenberger, J. R. van der Voort, J. Peleman, A. P. Sørensen and J. C. Reif, “Comparison of Linkage Disequilibrium in Elite European Maize Inbred Lines Using AFLP and SSR Markers,” Molecular Breeding, Vol. 17, No. 3, 2006, pp. 217-226.
[24] J. Ross-Ibarra, P. L. Morrell and B. S. Gaut, “Plant Domestication, a Unique Opportunity to Identify the Genetic Basis of Adaptation,” Proceedings of the National Academy of Sciences, Vol. 104, No. 1, 2007, pp. 8641-8648.
[25] J. L. Jannink and B. Walsh, “Association Mapping in Plant Populations,” In: M. S. Kang, Ed., Quantitative Genetics, Genomics and Plant Breeding, CAB International, Oxford, 2002, pp. 59-68.
[26] E. K. Karlsson, I. Baranowska, C. M. Wade, N. H. C. S. Hillbertz, M. C. Zody, N. Anderson, T. M. Biagi, N. Patterson, G. R. Pielberg, E. J. I. Kulbokas, K. E. Comstock, E. T. Keller, J. P. Mesirov, H. Euler, O. Kämpe, A. Hedhammar, E. S. Lander, G. Andersson, L. Andersson and K. Lindblad-Toh, “Efficient Mapping of Mendelian Traits in Dogs through Genome-Wide Association,” Nature Genetics, Vol. 39, 2007, pp. 1321-1328.
[27] A. DeWan, M. Liu, S. Hartman, S. S. Zhang, D. T. L. Liu, C. Zhao, P. O. S. Tam, W. M. Chan, D. S. C. Lam, M. Snyder, C. Barnstable, C. P. Pang and J. Hoh, “HTRA1 Promoter Polymorphism in Wet Age-Related Macular Degeneration,” Science, Vol. 314, 2006, pp. 989-992.
[28] D. B. Goldstein and M. E. Weale, “Population Genomics: Linkage Disequilibrium Holds the Key,” Current Biology, Vol. 11, No. 14, 2001, pp. 576-579.
[29] N. Risch and K. Merikangas, “The Future of Genetic Studies of Complex Human Diseases,” Science, Vol. 273, No. 5281, 1996, pp. 1516-1517.
[30] K. M. Weiss and A. G. Clark, “Linkage Disequilibrium and Mapping of Human Traits,” Trends in Genetics, Vol. 18, No. 1, 2002, pp. 19-24.
[31] J. M. Chapman, J. D. Cooper, J. A. Todd and D. G. Clayton, “Detecting Disease Associations Due to Linkage Disequilibrium Using Haplotype Tags: A Class of Tests and the Determinants of Statistical Power,” Human Heredity, Vol. 56, No. 1-3, 2003, pp. 18-31.
[32] H. Taniguchi, C. E. Lowe, J. D. Cooper, D. J. Smyth, R. Bailey, S. Nutland, B. C. Healy, A. C. Lam, O. Burren, N. M. Walke, L. J. Smink, L. S. Wicker and J. A. Todd, “Discovery, Linkage Disequilibrium and Association Analyses of Polymorphisms of the Immune Complement Inhibitor, Decay Accelerating Factor Gene (DAF/CD55) in Type 1 Diabetes,” B. M. C. Genetics, Vol. 7, No. 22, 2006.
[33] J. M. Thornsberry, M. M. Goodman, J. Doebley, S. Kresovich, D. Nielsen and E. S. Buckler, “Dwarf8 Polymorphisms Associate with Variation in Flowering Time,” Nature Genetics, Vol. 28, 2001, pp. 286-289.
[34] M. Sajjad, S. H. Khan and A. M. Kazi, “The Low Down on Association Mapping in Hexaploid Wheat (Triticumaestivum L.),” Journal of Crop Science and Biotechnology, Vol. 15, No. 3, 2012, pp. 147-158.
[35] A. T. W. Kraakman, R. E. Niks, P. M. M. M. Van den Berg, P. Stam and F. A. Van Eeuwijk, “Linkage Disequilibrium Mapping of Yield and Yield Stability in Modern Spring Barley Cultivars,” Genetics, Vol. 168, No. 1, 2004, pp. 435-446.
[36] A. T. W. Kraakman, F. Martinez, B. Mussiraliev, F. A. van Eeuwijk and R. E. Niks, “Linkage Disequilibrium Mapping of Morphological, Resistance, and Other Agronomically Relevant Traits in Modern Spring Barley Cultivars,” Molecular Breeding, Vol. 17, No. 1, 2006, pp. 41-58.
[37] J. Yao, L. Wang, L. Liu, C. Zhao and Y. Zheng, “Association Mapping of Agronomic Traits on Chromosome 2A of Wheat,” Genetica, Vol. 137, 2009, pp. 67-75.
[38] L. Liu, L. Wang, J. Yao, Y. Zheng and C. Zhao, “Association Mapping of Six Agronomic Traits on Chromosome 4A of Wheat (Triticumaestivum L.)” Molecular Plant Breeding, Vol. 1, 2010, pp. 1-10.
[39] A. H. Al-Maskri, M. Sajjad and S. H. Khan, “Association Mapping: A Step Forward to Discovering New Alleles for Crop Improvement,” International Journal of Agriculture and Biology, Vol. 14, No. 1, 2012, pp. 153-160.
[40] M. Sajjad, S. H. Khan, M. Qadir, A. Rasheesd, A. M. Kazi and I. A. Khan, “Association Mapping Identifies QTLs on Wheat Chromosome 3A for Yield Related Traits,” Cereal Research Communication.
[41] G. A. Churchill and R. W. Doerge, “Empirical Threshold Values for Quantitative Trait Mapping,” Genetics, Vol. 138, No. 3,1994, pp. 963-971.
[42] Y. Benjamini and Y. Hochberg, “Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing,” Journal of the Royal Statistical Society: Series B, Vol. 57, No. 1, 1995, pp. 289-300.
[43] J. K. Pritchard, M. Stephens and P. Donnelly, “Inference of Population Structure Using Multilocus Genotype Data,” Genetics, Vol. 155, 2000, pp. 945-959.
[44] P. Marttinen and J. Corander, “Efficient Bayesian Approach for Multilocus Association Mapping Including Gene-Gene Interactions,” BMC Bioinformatics, Vol. 11, 2010, p. 443.
[45] J. Yu, G. Pressoir, W. H. Briggs, I. V. Bi, M. Yamasaki, J. F. Doebley, M. D. McMullen, B. S. Gaut, D. M. Nielsen, J. B. Holland, S. Kresovich and E. S. Buckler, “A Unified Mixed-Model Method for Association Mapping that Accounts for Multiple Levels of Relatedness,” Nature Genetics, Vol. 38, 2006, pp. 203-208.
[46] K. Zhao, M. J. Aranzana, S. Kim, C. Lister, C. Shindo, C. Tang, C. Toomajian, H. Zheng, C. Dean, P. Marjoram and M. Nordborg, “An Arabidopsis Example of Associationmapping in Structured Samples,” PLoS Genetics, Vol. 3, No. 1, 2007, p. e4.
[47] B. R. Thumma, M. F. Nolan, R. Evans and G. F. Moran, “Polymorphisms in Cinnamoyl CoA Reductase (CCR) Are Associated with Variation in Microfibril Angle in Eucalyptus spp.” Genetics, Vol. 71, No. 3, 2005, pp. 1257-1265.
[48] R. D. Ball, “Experimental Designs for Reliable Detection of Linkage Disequilibrium in Unstructured Random Population Association Studies,” Genetics, Vol. 170, No. 2, 2005, pp. 859-873.
[49] T. F. Mackay, “Quantitative Trait Loci in Drosophila,” Nature Reviews Genetics, Vol. 1, 2001, pp. 11-20.
[50] E. S. Buckler, B. S. Gaut and M. D. McMullen, “Molecular and Functional Diversity of Maize,” Current Opinion in Plant Biology, Vol. 9, 2006, pp. 172-176.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.