Share This Article:

Crocetin Prevents Amyloid β1-42-Induced Cell Death in Murine Hippocampal Cells

Full-Text HTML XML Download Download as PDF (Size:280KB) PP. 37-42
DOI: 10.4236/pp.2014.51007    3,219 Downloads   4,687 Views   Citations


Crocetin is an aglycon of carotenoid extracted by saffron stigmas (Crocus sativus L.) and known to have a potent anti-oxidative effect. Amyliod β (Aβ), hallmark of Alzheimer’s disease, is reported to have neurotoxicity partly via oxidative stress. In this study, we investigated the effect of crocetin on hippocampal HT22 cell death induced by Aβ1-42. Furthermore, to clarify the mechanism underlying the protective effects of crocetin against Aβ1-42- induced cell death, we measured reactive oxygen species (ROS) production by CM-H2DCFDA kit assay. Crocetin at 1 -10 μM protected HT22 cells against Aβ1-42-induced neuronal cell death and decreased ROS production increased by Aβ1-42. These results that crocetin has the potent neuroprotective effect against Aβ1-42-induced cytotoxicity in hippocampal cells by attenuating oxidative stress, suggest that crocetin may provide a useful therapeutic strategy against Aβ-related disorders.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Y. Yoshino, M. Ishisaka, N. Umigai, M. Shimazawa, K. Tsuruma and H. Hara, "Crocetin Prevents Amyloid β1-42-Induced Cell Death in Murine Hippocampal Cells," Pharmacology & Pharmacy, Vol. 5 No. 1, 2014, pp. 37-42. doi: 10.4236/pp.2014.51007.


[1] L. Buee, D. Blum, S. Bombois, V. Buee-Scherrer, M. L. Caillet-Boudin, M. Colin, V. Deramecourt, C. M. Dhaenens, M. C. Galas, M. Hamdane, S. Humez, C. A. Maurage, F. Pasquier, B. Sablonniere, S. Schraen-Maschke and N. Sergeant, “Molecular Actors in Alzheimer’s Disease: Which Diagnostic and Therapeutic Consequences?” Therapie, Vol. 65, No. 5, 2010, pp. 401-407.
[2] A. Arikanoglu, E. Akil, S. Varol, Y. Yucel, H. Yuksel, M. U. Cevik, Y. Palanci and F. Unan, “Relationship of Cognitive Performance with Prolidase and Oxidative Stress in Alzheimer Disease,” Neurological Sciences, Vol. 34, No. 12, 2013, pp. 2117-2121.
[3] J. C. Breitner, “Inflammatory Processes and Antiinflammatory Drugs in Alzheimer’s Disease: A Current Appraisal,” Neurobiology of Aging, Vol. 17, No. 5, 1996, pp. 789-794.
[4] K. Blennow, M. J. de Leon and H. Zetterberg, “Alzheimer’s Disease,” Lancet, Vol. 368, No. 9533, 2006, pp. 387-403.
[5] D. A. Butterfield, A. Castegna, C. M. Lauderback and J. Drake, “Evidence That Amyloid Beta-Peptide-Induced Lipid Peroxidation and Its Sequelae in Alzheimer’s Disease Brain Contribute to Neuronal Death,” Neurobiology of Aging, Vol. 23, No. 5, 2002, pp. 655-664.
[6] H. Aoki, N. Kuze, T. Ichi and T. Koda, “Analytical Method for Buddleja Colorants in Foods,” Shokuhin Eiseigaku Zasshi, Vol. 42, No. 2, 2001, pp. 84-90.
[7] N. Li, G. Lin, Y. W. Kwan and Z. D. Min, “Simultaneous Quantification of Five Major Biologically Active Ingredients of Saffron by High-Performance Liquid Chromatography,” Journal of Chromatography A, Vol. 849, No. 2, 1999, pp. 349-355.
[8] H. Hosseinzadeh and M. Nassiri-Asl, “Avicenna’s (Ibn Sina) the Canon of Medicine and Saffron (Crocus sativus): A Review,” Phytotherapy Research, Vol. 27, No. 4, 2002, pp. 475-483.
[9] H. H. Aung, C. Z. Wang, M. Ni, A. Fishbein, S. R. Mehendale, J. T. Xie, C. Y. Shoyama and C. S. Yuan, “Crocin from Crocus sativus Possesses Significant Anti-Proliferation Effects on Human Colorectal Cancer Cells,” Experimental Oncology, Vol. 29, No. 3, 2007, pp. 175-180.
[10] C. J. Wang, J. D. Hsu and J. K. Lin, “Suppression of Aflatoxin B1-Induced Hepatotoxic Lesions by Crocetin (a Natural Carotenoid),” Carcinogenesis, Vol. 12, No. 10, 1991, pp. 1807-1810.
[11] T. H. Tseng, C. Y. Chu, J. M. Huang, S. J. Shiow and C. J. Wang, “Crocetin Protects against Oxidative Damage in Rat Primary Hepatocytes,” Cancer Letters, Vol. 97, No. 1, 1995, pp. 61-67.
[12] T. Ochiai, H. Shimeno, K. Mishima, K. Iwasaki, M. Fujiwara, H. Tanaka, Y. Shoyama, A. Toda, R. Eyanagi and S. Soeda, “Protective Effects of Carotenoids from Saffron on Neuronal Injury in Vitro and in Vivo,” Biochimica et Biophysica Acta, Vol. 1770, No. 4, 2007, pp. 578-584.
[13] J. H. Ahn, Y. Hu, M. Hernandez and J. R. Kim, “Crocetin Inhibits Beta-Amyloid Fibrillization and Stabilizes BetaAmyloid Oligomers,” Biochemical and Biophysical Research Communications, Vol. 414, No. 1, 2011, pp. 79-83.
[14] M. Yamauchi, K. Tsuruma, S. Imai, T. Nakanishi, N. Umigai, M. Shimazawa and H. Hara, “Crocetin Prevents Retinal Degeneration Induced by Oxidative and Endoplasmic Reticulum Stresses via Inhibition of Caspase Activity,” European Journal of Pharmacology, Vol. 650, No. 1, 2011, pp. 110-119.
[15] Y. Ohno, T. Nakanishi, N. Umigai, K. Tsuruma, M. Shimazawa and H. Hara, “Oral Administration of Crocetin Prevents Inner Retinal Damage Induced by N-Methyl-D-Aspartate in Mice,” European Journal of Pharmacology, Vol. 690, No. 1-3, 2012, pp. 84-89.
[16] S. Akhondzadeh, M. S. Sabet, M. H. Harirchian, M. Togha, H. Cheraghmakani, S. Razeghi, S. Hejazi, M. H. Yousefi, R. Alimardani, A. Jamshidi, F. Zare and A. Moradi, “Saffron in the Treatment of Patients with Mild to Moderate Alzheimer’s Disease: A 16-Week, Randomized and Placebo-Controlled Trial,” Journal of Clinical Pharmacy and Therapeutics, Vol. 35, No. 5, 2010, pp. 581-588.
[17] S. Akhondzadeh, M. Shafiee Sabet, M. H. Harirchian, M. Togha, H. Cheraghmakani, S. Razeghi, S. S. Hejazi, M. H. Yousefi, R. Alimardani, A. Jamshidi, S. A. Rezazadeh, A. Yousefi, F. Zare, A. Moradi and A. Vossoughi, “A 22-Week, Multicenter, Randomized, Double-Blind Controlled Trial of Crocus sativus in the Treatment of Mild-toModerate Alzheimer’s Disease,” Psychopharmacology, Vol. 207, No. 4, 2013, pp. 637-643.
[18] Y. J. Huang, M. H. Jin, R. B. Pi, J. J. Zhang, Y. Ouyang, X. J. Chao, M. H. Chen, P. Q. Liu, J. C. Yu, C. Ramassamy, J. Dou, X. H. Chen, Y. M. Jiang and J. Qin, “Acrolein Induces Alzheimer’s Disease-Like Pathologies in Vitro and in Vivo,” Toxicology Letters, Vol. 217, No. 3, 2010, pp. 184-191.
[19] F. Yoshino, A. Yoshida, N. Umigai, K. Kubo and M. C. Lee, “Crocetin Reduces the Oxidative Stress Induced Reactive Oxygen Species in the Stroke-Prone Spontaneously Hypertensive Rats (SHRSPs) Brain,” Journal of Clinical Biochemistry and Nutrition, Vol. 49, No. 3, 2011, pp. 182-187.
[20] R. Sultana and D. A. Butterfield, “Oxidative Modification of Brain Proteins in Alzheimer’s Disease: Perspective on Future Studies Based on Results of Redox Proteomics Studies,” Journal of Alzheimer’s Disease, Vol. 33, Suppl. 1, 2013, pp. S243-S251.
[21] N. Umigai, K. Murakami, M. V. Ulit, L. S. Antonio, M. Shirotori, H. Morikawa and T. Nakano, “The Pharmacokinetic Profile of Crocetin in Healthy Adult Human Volunteers after a Single Oral Administration,” Phytomedicine, Vol. 18, No. 7, 2011, pp. 575-578.
[22] S. S. Hardas, R. Sultana, A. M. Clark, T. L. Beckett, L. I. Szweda, M. P. Murphy and D. A. Butterfield, “Oxidative Modification of Lipoic Acid by HNE in Alzheimer Disease Brain,” Redox Biology, Vol. 1, No. 1, 2013, pp. 80-85.
[23] M. H. Yan, X. Wang and X. Zhu, “Mitochondrial Defects and Oxidative Stress in Alzheimer Disease and Parkinson Disease,” Free Radical Biology & Medicine, Vol. 62, 2013, pp. 90-101.
[24] C. Behl, “Amyloid Beta-Protein Toxicity and Oxidative Stress in Alzheimer’s Disease,” Cell and Tissue Research, Vol. 290, No. 3, 1997, pp. 471-480.
[25] V. Fedulov, C. S. Rex, D. A. Simmons, L. Palmer, C. M. Gall and G. Lynch, “Evidence That Long-Term Potentiation Occurs within Individual Hippocampal Synapses during Learning,” Journal of Neuroscience, Vol. 27, No. 30, 2007, pp. 8031-8039.
[26] K. A. Jellinger and C. Stadelmann, “Problems of Cell Death in Neurodegeneration and Alzheimer’s Disease,” Journal of Alzheimer’s Disease, Vol. 3, No. 1, 2001, pp. 31-40.
[27] Y. Zhang, Y. Shoyama, M. Sugiura and H. Saito, “Effects of Crocus sativus L. on the Ethanol-Induced Impairment of Passive Avoidance Performances in Mice,” Biological & Pharmaceutical Bulletin, Vol. 17, No. 2, 1994, pp. 217-221.
[28] M. Khalili and F. Hamzeh, “Effects of Active Constituents of Crocus sativus L., Crocin on Streptozocin-Induced Model of Sporadic Alzheimer’s Disease in Male Rats,” Iranian Biomedical Journal, Vol. 14, No. 1-2, 2010, pp. 59-65.
[29] M. A. Papandreou, M. Tsachaki, S. Efthimiopoulos, P. Cordopatis, F. N. Lamari and M. Margarity, “Memory Enhancing Effects of Saffron in Aged Mice Are Correlated with Antioxidant Protection,” Behavioural Brain Research, Vol. 219, No. 2, 2011, pp. 197-204.
[30] B. Ghadrdoost, A. A. Vafaei, A. Rashidy-Pour, R. Hajisoltani, A. R. Bandegi, F. Motamedi, S. Haghighi, H. R. Sameni and S. Pahlvan, “Protective Effects of Saffron Extract and Its Active Constituent Crocin against Oxidative Stress and Spatial Learning and Memory Deficits Induced by Chronic Stress in Rats,” European Journal of Pharmacology, Vol. 667, No. 1-3, 2011, pp. 222-229.
[31] H. Hosseinzadeh and H. R. Sadeghnia, “Safranal, a Constituent of Crocus sativus (Saffron), Attenuated Cerebral Ischemia Induced Oxidative Damage in Rat Hippocampus,” Journal of Pharmacy & Pharmaceutical Sciences, Vol. 8, No. 3, 2005, pp. 394-399.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.