Share This Article:

Gaseous and Electrochemical Hydrogen Storage Properties of Nanocrystalline Mg2Ni-Type Alloys Prepared by Melt Spinning

Abstract Full-Text HTML Download Download as PDF (Size:3643KB) PP. 141-150
DOI: 10.4236/msa.2011.23018    4,093 Downloads   7,720 Views  

ABSTRACT

A partial substitution of Ni by Cu has been carried out in order to improve the hydrogen storage characteristics of the Mg2Ni-type alloys. The nanocrystalline Mg20Ni10-xCux (x = 0, 1, 2, 3, 4) alloys are synthesized by the melt-spinning technique. The structures of the as-cast and spun alloys have been characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and high resolution transmission electron microscope (HRTEM). The electrochemical performances were evaluated by an automatic galvanostatic system. The hydrogen absorption and desorption kinetics of the alloys were determined by using an automatically controlled Sieverts apparatus. The results indicate that the substitution of Cu for Ni does not alter the major phase Mg2Ni. The Cu substitution significantly ameliorates the electrochemical hydrogen storage performances of alloys, involving both the discharge capacity and the cycle stability. The hydrogen absorption capacity of alloys has been observed to be first increase and then decrease with an increase in the Cu contents. However, the hydrogen desorption capacity of the alloys exhibit a monotonous growth with an increase in the Cu contents.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Z. Ma, B. Li, H. Ren, Z. Hou, G. Zhang and Y. Zhang, "Gaseous and Electrochemical Hydrogen Storage Properties of Nanocrystalline Mg2Ni-Type Alloys Prepared by Melt Spinning," Materials Sciences and Applications, Vol. 2 No. 3, 2011, pp. 141-150. doi: 10.4236/msa.2011.23018.

References

[1] L. Schlapbach and A. Züttel, “Hydogen-Storage Matcrials for Mobile Application,” Journal of Nature, Vol. 414, 2001, pp. 353-358. doi:10.1038/35104634
[2] M. V. Simicic, M. Zdujic, R. Dimitrijevic, L. Nikoli?-Bujanovi? and N. H. Popovic, “Hydrogen Absorption and Electrochemical Properties of Mg2Ni-Type Alloys Synthesized by Mechanical Alloying,” Journal of Power Sources, Vol. 158, No. 1, 2006, pp. 730-734. doi:10.1016/j.jpowsour.2005.09.030
[3] A. Ebrahimi-Purkani and S. F. Kashani-Bozorg, “Nanocrystalline Mg2Ni-Based Powders Produced by High-Energy Ball Milling and Subsequent Annealing,” Journal of Alloys and Compounds, Vol. 456, No. 1-2, 2008, pp. 211-215. doi:10.1016/j.jallcom.2007.02.003
[4] D. Kyoi, T. Sakai, N. Kitamura, A. Ueda and S. Tanase, “Synthesis of FCC Mg–Ta Hydrides Using GPa Hydrogen Pressure Method and Their Hydrogen-Desorption Properties,” Journal of Alloys and Compounds, Vol. 463, No. 1-2, 2008, pp. 306-310. doi:10.1016/j.jallcom.2007.09.003
[5] P. Palade, S. Sartori, A. Maddalena, G. Principi, S. Lo Russo, M. Lazarescu, G. Schinteie, V. Kuncser and G. Filoti, “Hydrogen Storage in Mg-Ni-Fe Compounds Prepared by Melt Spinning and Ball Milling,” Journal of Alloys and Compounds, Vol. 415, No. 1-2, 2006, pp. 170-176. doi:10.1016/j.jallcom.2005.08.017
[6] M. Y. Song, C. D. Yim, J. S. Bae, D. R. Mummd and S. H. Hong, “Preparation by Gravity Casting and Hydrogen-Storage Properties of Mg–23.5 wt.%Ni–(5, 10 and 15 wt.%)La,” Journal of Alloys and Compounds, Vol. 463, No. 1-2, 2008, pp. 143-147. doi:10.1016/j.jallcom.2007.08.079
[7] X. F. Liu, Y. F. Zhu and L. Q. Li, “Structure and Hydrogenation Properties of Nanocrystalline Mg2Ni Prepared by Hydriding Combustion Synthesis and Mechanical Milling,” Journal of Alloys Compounds, Vol. 455, No. 1-2, 2008, pp. 197-202. doi:10.1016/j.jallcom.2007.01.073
[8] F. J. Liu and S. Suda, “A Method for Improving the Long-Term Storability of Hydriding Alloys by Air Water Exposure,” Journal of Alloys and Compounds, Vol. 231, No. 1-2, 1995, pp. 742-750. doi:10.1016/0925-8388(95)01711-9
[9] T. Czujko, R. A. Varin, C. Chiu and Z. Wronski, “Investigation of the Hydrogen Desorption Properties of Mg + 10 wt.% X (X = V, Y, Zr) Submicrocrystalline Composites,” Journal of Alloys and Compounds, Vol. 414, No. 1-2, 2006, pp. 240-247. doi:10.1016/j.jallcom.2005.07.009
[10] C. X. Shang, M. Bououdina, Y. Song and Z. X. Guo, “Mechanical Alloying and Electronic Simulations of (MgH2 + M) Systems (M = Al, Ti, Fe, Ni, Cu and Nb) for Hydrogen Storage,” Internation Journal of Hydrogen Energy, Vol. 29, No. 1, 2004, pp. 73-80. doi:10.1016/S0360-3199(03)00045-4
[11] B. Sakintuna, F. Lamari-Darkrim and M. Hirscher, “Metal Hydride Materials for Solid Hydrogen Storage: A Review,” International Journal of Hydrogen Energy, Vol. 32, No. 9, 2007, pp. 1121-1140. doi:10.1016/j.ijhydene.2006.11.022
[12] A. Zaluska, L. Zaluski and J. O. Stroem-Olsen, ”Synergy of Hydrogen Sorption in Ball-Milled Hydrides of Mg and Mg2Ni,” Journal of Alloys and Compounds, Vol. 289, No. 1-2, 1999, pp. 197-206. doi:10.1016/S0166-0462(99)00013-7
[13] N. Hanada, T. Ichikawa and H. Fujii, “Catalytic Effect of Nanoparticle 3d-Transition Metals on Hydrogen Storage Properties in Magnesium Hydride MgH2 Prepared by Mechanical Milling,” Journal of Physical Chemistry B, Vol. 109, No. 15, 2005, pp. 7188-7194. doi:10.1021/jp044576c
[14] N. Recham, V. V. Bhat, M. Kandavel, L. Aymard, J.-M. Tarascon and A. Rougier, “Reduction of Hydrogen Desorption Temperature of Ball-Milled MgH2 by NbF5 Addition,” Journal of Alloys and Compounds, Vol. 464, No. 1-2, 2008, pp. 377-382. doi:10.1016/j.jallcom.2007.09.130
[15] V. D. Dobrovolsky, O. G. Ershova, Y. M. Solonin, O. Y. Khyzhuna and V. Paul-Boncour, “Influence of TiB2 Addition upon Thermal Stability and Decomposition Temperature of the MgH2 Hydride of a Mg-Based Mechanical Alloy,” Journal of Alloys and Compounds, Vol. 465, No. 1-2, 2008, pp. 177-182. doi:10.1016/j.jallcom.2007.10.125
[16] N. Cui, B. Luan, H. J. Zhao, H. K. Liu and S. X. Dou, “Effects of Yttrium Additions on the Electrode Performance of Magnesium-Based Hydrogen Storage Alloys,” Journal of Alloys and Compounds, Vol. 233, No. 1-2, 1996, pp. 236-240. doi:10.1016/0925-8388(95)02061-6
[17] T. Kohno and M. Kanda, “Effect of Partial Substitution on Hydrogen Storage Properties of Mg2Ni Alloy,” Journal Electrochemical Society, Vol. 144, 1997, pp. 2384-2388. doi:10.1149/1.1837823
[18] G. Y. Liang, “Synthesis and Hydrogen Storage Properties of Mg-Based Alloys,” Journal of Alloys and Compounds, Vol. 370, No. 1-2, 2004, pp. 123-128. doi:10.1016/j.jallcom.2003.09.031
[19] M. Y. Song, S. N. Kwon, J. S. Bae and S. H. Hong, “Hydrogen-Storage Properties of Mg–23.5Ni–(0 and 5) Cu Prepared by Melt Spinning and Crystallization Heat Treatment,” International Journal of Hydrogen Energy, Vol. 33, No. 6, 2008, pp. 1711-1718. doi:10.1016/j.ijhydene.2008.01.006
[20] M. Savyak, S. Hirnyj, H.-D. Bauer, M. Uhlemann, J. Eckert, L. Schultz and A. Gebert, “Electrochemical Hydrogenation of Mg65Cu25Y10 Metallic Glass,” Journal of Alloys and Compounds, Vol. 364, No. 1-2, 2004, pp. 229-237. doi:10.1016/S0925-8388(03)00529-2
[21] T. Spassov and U. K?ster, “Thermal Stability and Hydriding Properties of Nanocrystalline Melt-Spun Mg63Ni30Y7 Alloy,” Journal of Alloys and Compounds, Vol. 279, No. 2, 1998, pp. 279-286. doi:10.1016/S0925-8388(98)00680-X
[22] L. J. Huang, G. Y. Liang, Z. B. Sun and D. C. Wu, “Electrode Properties of Melt-Spun Mg-Ni-Nd Amorphous Alloys,” Journal of Power Sources, Vol. 160, No. 1, 2006, pp. 684-687. doi:10.1016/j.jpowsour.2005.12.072
[23] Y. H. Zhang, B. W. Li, H. P. Ren, S. H. Guo, Z. W. Wu and X. L. Wang, “Hydriding and Dehydriding Characteristics of Nanocrystalline and Amorphous Mg20Ni10-xCox (x = 0-4) Alloys Prepared by Melt-Spinning,” International Journal Hydrogen Energy, Vol. 34, No. 6, 2009, pp. 2684-2691. doi:10.1016/j.ijhydene.2009.01.031
[24] G. Friedlmeier, M. Arakawa, T. Hiraia and E. Akiba, “Preparation and Structural, Thermal and Hydriding Characteristics of Melt-Spun Mg–Ni Alloys,” Journal of Alloys and Compounds, Vol. 292, No. 1-2, 1999, pp. 107-117. doi:10.1016/S0925-8388(99)00285-6
[25] S. Orimo and H. Fujii, “Materials Science of Mg-Ni-Based New Hydrides,” Applied Physics A, Vol. 72, No. 2, 2001, pp. 167-186. doi:10.1007/s003390100771
[26] K. Tanaka, Y. Kanda, M. Furuhashi, K. Saito, K. Kuroda and H. Saka, “Improvement of Hydrogen Storage Properties of Melt-Spun Mg–Ni–Re Alloys by Nanocrystallization,” Journal of Alloys and Compounds, Vol. 295, 1999, pp. 521-525. doi:10.1016/S0925-8388(99)00477-6
[27] G. Mulas, L. Schiffini and G. Cocco, “Mechanochemical Study of the Hydriding Properties of Nanostructured Mg2Ni–Ni Composites,” Journal of Materials Research, Vol. 19, 2004, pp. 3279-3289. doi:10.1557/JMR.2004.0417
[28] L. Zaluski, A. Zaluska and J. O. Str?m-Olsen, “Nanocry- stalline Metal Hydrides,” Journal of Alloys and Com- pounds, Vol. 253-254, 1997, pp. 70-79. doi:10.1016/S0925-8388(96)02985-4
[29] S. Orimo, H. Fujii and K. Ikeda, “Notable Hydriding Properties of A Nanostructured Composite Material of the Mg2Ni-H System Synthesized by Reactive Mechanical Grinding,” Acta Materialia, Vol. 45, No. 1, 1997, pp. 331-341. doi:10.1016/S1359-6454(96)00158-9
[30] J.-H. Woo and K.-S. Lee, “Electrode Characteristics of Nanostructured MgNi-Type Alloys Prepared by Mechanical Alloying,” Journal Electrochemical Society, Vol. 146, No. 3, 1999, pp. 819-823. doi:10.1149/1.1391687

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.