Share This Article:

Polymeric Liquid Templating of Hierarchical Porous Films by Nanofibrillar Alginic Acid Assemblies

Abstract Full-Text HTML XML Download Download as PDF (Size:1842KB) PP. 6-14
DOI: 10.4236/snl.2014.41002    5,117 Downloads   6,944 Views   Citations


Hierarchical phases of the biomaterials can be used as template to transfer their intricate organization into biomimic inorganic solids. Herein, hierarchical mesoporous silica films with aligned pores have been templated by nanofibrillar alginic acid. An aqueous suspension of the alginic acid nanofibers was prepared by treating the brown seaweeds with sodium carbonate solution and subsequent precipitation in dilute hydrochloric acid. The alginic acid nanofibers of the organize into a hierarchical aligned phase in an acetic acid-sodium acetate buffer that was used to template silica-alginic acid composite films by evaporation induced self-assembly of alkoxysilane with nanofibrillar alginic acid. Calcination of the alginic acid template afforded hierarchical mesoporous silica glasses. Carbonization of the silica-alginic acid composites and subsequent etching the silica recovered mesoporous carbon supercapacitors.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

T. Tran, S. Ho and T. Nguyen, "Polymeric Liquid Templating of Hierarchical Porous Films by Nanofibrillar Alginic Acid Assemblies," Soft Nanoscience Letters, Vol. 4 No. 1, 2014, pp. 6-14. doi: 10.4236/snl.2014.41002.


[1] C. Sanchez, H. Arribart and M. M. Giraud Guille, “Biomimetism and Bioinspiration as Tools for the Design of Innovative Materials and Systems,” Nature Materials, Vol. 4, No. 4, 2005, pp. 277-288.
[2] J. Aizenberg, J. C. Weaver, M. S. Thanawala1, V. C. Sundar, D. E. Morse and P. Fratzl, “Skeleton of Euplectella sp.: Structural Hierarchy from the Nanoscale to the Macroscale,” Science, Vol. 309, No. 5732, 2005, pp. 275-278.
[3] W.-J. Chung, J.-W. Oh, K. Kwak, B. Y. Lee, J. Meyer, E. Wang, A. Hexemer and S.-W. Lee, “Biomimetic Self-templating Supramolecular Structures,” Nature, Vol. 478, No. 7369, 2011, pp. 364-368.
[4] H. Zhou, T. Fan and D. Zhang, “Biotemplated Materials for Sustainable Energy and Environment: Current Status and Challenges,” ChemSusChem, Vol. 4, No. 10, 2011, pp. 1344-1387.
[5] V. Percec, “Bioinspired Supramolecular Liquid Crystals. Philosophical Transactions of the Royal Society A: Mathematical,” Physical and Engineering Sciences, Vol. 364, No. 1847, 2006, pp. 2709-2719.
[6] S. H. Tolbert, “Magnetic Field Alignment of Ordered Silicate-Surfactant Composites and Mesoporous Silica,” Science, Vol. 278, No. 5336, 1997. pp. 264-268.
[7] P. Feng, X. Bu and D. J. Pine, “Control of Pore Sizes in Mesoporous Silica Templated by Liquid Crystals in Block Copolymer-Cosurfactant-Water Systems,” Langmuir, Vol. 16, No. 12, 2000. pp. 5304-5310.
[8] H. Yang, N. Coombs, I. Sokolov and G. A. Ozin, “Free-Standing and Oriented Mesoporous Silica Films Grown at the Air-Water Interface,” Nature, Vol. 381, No. 6583, 1996, pp. 589-592.
[9] G. S. Attard, J. C. Glyde and C. G. Goltner, “Liquid-Crystalline Phases as Templates for the Synthesis of Mesoporous Silica,” Nature, Vol. 378, No. 6555, 1995, pp. 366-368.
[10] I. Hodgkinson and Q. H. Wu, “Inorganic Chiral Optical Materials,” Advanced Materials, Vol. 13, No. 12-13, 2001, pp. 889-897.<889::AID-ADMA889>3.0.CO;2-K
[11] B. F. G. Johnson, et al., “Superior Performance of a Chiral Catalyst Confined within Mesoporous Silica,” Chemical Communications, No. 13, 1999, pp. 1167-1168.
[12] K. Kosuge, S. Kubo, N. Kikukawa and M. Takemori, “Effect of Pore Structure in Mesoporous Silicas on VOC Dynamic Adsorption/Desorption Performance,” Langmuir, Vol. 23, No. 6, 2007, pp. 3095-3102.
[13] A. I. Hochbaum and P. Yang, “Semiconductor Nanowires for Energy Conversion,” Chemical Reviews, Vol. 110, No. 1, 2009, pp. 527-546.
[14] S. J.Woltman, G. D. Jay and G. P. Crawford, “Liquid-Crystal Materials Find a New Order in Biomedical Ap- plications,” Nature Materials, Vol. 6, No. 12, 2007, pp. 929-938.
[15] A. D. Augst, H. J. Kong and D. J. Mooney, “Alginate Hydrogels as Biomaterials,” Macromolecular Bioscience, Vol. 6, No. 8, 2006, pp. 623-633.
[16] A. Ikeda, A. Takemura and H. Ono, “Preparation of Low-Molecular Weight Alginic Acid by Acid Hydrolysis,” Carbohydrate Polymers, Vol. 42, No. 4, 2000, pp. 421-425.
[17] E. Dujardin, M. Blaseby and S. Mann, “Synthesis of Mesoporous Silica by Sol-Gel Mineralisation of Cellulose Nanorod Nematic Suspensions,” Journal of Materials Chemistry, Vol. 13, No. 4, 2003, pp. 696-699.
[18] B. Alonso and E. Belamie, “Chitin-Silica Nanocomposites by Self-Assembly,” Angewandte Chemie International Edition, Vol. 49, No. 44, 2010, pp. 8201-8204.
[19] E. Belamie, M. Y. Boltoeva, K. Yang, T. Cacciaguerra and B. Alonso, “Tunable Hierarchical Porosity from Self-Assembled Chitin-Silica Nano-Composites,” Journal of Materials Chemistry, Vol. 21, No. 42, 2011, pp. 16997-17006.
[20] W. Ogasawara, W. Shenton, S. A. Davis and S. Mann, “Template Mineralization of Ordered Macroporous Chitin-Silica Composites Using a Cuttlebone-Derived Organic Matrix,” Chemistry of Materials, Vol. 12, No. 10, 2000, pp. 2835-2837.
[21] K. Spinde, M. Kammer, K. Freyer, H. Ehrlich, J. N. Vournakis and K. Brunner, “Biomimetic Silicification of Fibrous Chitin from Diatoms,” Chemistry of Materials, Vol. 23, No. 11, 2011, pp. 2973-2978.
[22] A. Stein, Z. Wang and M. A. Fierke, “Functionalization of Porous Carbon Materials with Designed Pore Architecture,” Advanced Materials, Vol. 21, No. 3, 2009, pp. 265-293.
[23] C. Z. Yuan, B. Gao, L. F. Shen, S. D. Yang, L. Hao, X. J. Lu, F. Zhang, L. J. Zhanga and X. G. Zhang, “Hierarchically Structured Carbon-Based Composites: Design, Synthesis and Their Application in Electrochemical Capacitors,” Nanoscale, Vol. 3, No. 2, 2011, pp. 529-545.
[24] J. Hyun Young, et al., “Transparent, Flexible Supercapacitors from Nano-Engineered Carbon Films,” Scientific Reports, Vol. 2, 2012.
[25] A. Ghosh and Y. H. Lee, “Carbon-Based Electrochemical Capacitors,” ChemSusChem, Vol. 5, No. 3, 2012, pp. 480-499.
[26] R. J. White, V. Budarin, R. Luque, J. H. Clark and D. J. Macquarriea, “Tuneable Porous Carbonaceous Materials from Renewable Resources,” Chemical Society Reviews, Vol. 38, No. 12, 2009, pp. 3401-3418.
[27] X.-L.Wu, L.-L. Chen, S. Xin, Y.-X. Yin, Y.-G. Guo, Q.-S. Kong and Y.-Z. Xia, “Preparation and Li Storage Properties of Hierarchical Porous Carbon Fibers Derived from Alginic Acid,” ChemSusChem, Vol. 3, No. 6, 2010, pp. 703-707.
[28] C. Jeon, J. Y. Park and Y. J. Yoo, “Characteristics of Metal Removal Using Carboxylated Alginic Acid,” Water Research, Vol. 36, No. 7, 2002, pp. 1814-1824.
[29] C. Tapia, V. Montezuma and M. Yazdani-Pedram, “Microencapsulation by Spray Coagulation of Diltiazem HCl in Calcium Alginate-Coated Chitosan,” AAPS Pharm- SciTech, Vol. 9, No. 4, 2008, pp. 1198-1206.
[30] R. J. White, C. Antonio, V. L. Budarin, E. Bergstrom, J. Thomas-Oates and J. H. Clark, “Polysaccharide-Derived Carbons for Polar Analyte Separations,” Advanced Functional Materials, Vol. 20, No. 11, 2010, pp. 1834-1841.
[31] E. Raymundo-Pinero, M. Cadek and F. Béguin, “Tuning Carbon Materials for Supercapacitors by Direct Pyrolysis of Seaweeds,” Advanced Functional Materials, Vol. 19, No. 7, 2009, pp. 1032-1039.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.