Share This Article:
Review Paper

Molecular Basis of Aluminium Toxicity in Plants: A Review

Abstract Full-Text HTML XML Download Download as PDF (Size:380KB) PP. 21-37
DOI: 10.4236/ajps.2013.412A3004    6,658 Downloads   9,977 Views   Citations

ABSTRACT

Aluminium toxicity in acid soils having pH below 5.5, affects the production of staple food crops, vegetables and cash crops worldwide. About 50% of the world’s potentially arable lands are acidic. It is trivalent cationic form i.e. Al3+ that limits the plant’s growth. Absorbed Aluminium inhibits root elongation and adversely affects plant growth. Recently researches have been conducted to understand the mechanism of Aluminium toxicity and resistance which is important for stable food production in future. Aluminium resistance depends on the ability of the plant to tolerate Aluminium in symplast or to exclude it to soil. Physiological and molecular basis of Aluminium toxicity and resistance mechanism are important to understand for developing genetically engineered plants for Al toxicity resistance. This paper provides an overview of the state of art in this field.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

N. Gupta, S. Gaurav and A. Kumar, "Molecular Basis of Aluminium Toxicity in Plants: A Review," American Journal of Plant Sciences, Vol. 4 No. 12C, 2013, pp. 21-37. doi: 10.4236/ajps.2013.412A3004.

References

[1] H. R. Von Uexküll and E. Mutert, “Global Extent, Development and Economic Impact of Acid Soils,” Plant Soil, Vol. 171, No. 1, 1995, pp. 1-15.
http://dx.doi.org/10.1007/BF00009558
[2] A. J. Bot, F. O. Nachtergaele and A. Young, “Land Resource Potential and Constraints at Regional and Country Levels,” Food and Agricultural Organization of the United Nations, Rome, 2000, pp. 114.
[3] S. A. Bhalerao and D. V. Prabhu, “Aluminium Toxicity in Plants—A Review,” Journal of Applicable Chemistry, Vol. 2, No. 3, 2013, pp. 447-474.
[4] H. Eswaran, P. Reich and F. Beinroth, “Global Distribution of Soils with Acidity,” In: A. C. Moniz, et al., Eds., Plant-Soil Interactions at Low pH, Brazilian Soil Science Society, 1997, pp. 159-164.
[5] V. A. Vitorello, F. R. C. Capaldi and V. A. Stefanuto, “Recent Advances in Aluminum Toxicity and Resistance in Higher Plants,” Brazilian Journal of Plant Physiology, Vol. 17, No. 1, 2005, 129-143.
http://dx.doi.org/10.1590/S1677-04202005000100011
[6] E. Delhaize and P. R. Ryan, “Aluminum Toxicity and Tolerance in Plants,” Plant Physiology, Vol. 107, No. 2, 1995, pp. 315-321.
[7] H. Matsumoto, “Cell Biology of Aluminum Toxicity and Tolerance in Higher Plants,” International Review of Cytology, Vol. 200, 2000, pp. 1-47.
http://dx.doi.org/10.1016/S0074-7696(00)00001-2
[8] M. Ciamporova, “Morphological and Structural Responses of Roots to Aluminium at Organ, Tissue and Cellular Levels,” Journal of Plant Biology, Vol. 45, No. 2, 2002, pp. 161-171.
http://dx.doi.org/10.1023/A:1015159601881
[9] L. V. Kochian, “Cellular Mechanisms of Aluminum Toxicity and Resistance in Plants,” Annual Review of Plant Physiology and Plant Molecular Biology, Vol. 46, No. 1, 1995, pp. 237-260.
http://dx.doi.org/10.1146/annurev.pp.46.060195.001321
[10] H. Matsumoto, Y. Yamamoto and S. R. Devi, “Aluminum Toxicity in Acid Soils. Plant Responses to Aluminum,” In: M. N. V. Prassad, Ed., Metals in the Environment, Okayama University, Kurashiki, 2001, pp. 289-320.
[11] J. Barceló and C. Poschenrieder, “Fast Root Growth Responses, Root Exudates, and Internal Detoxification as Clues to the Mechanisms of Aluminium Toxicity and Resistance: A Review,” Environmental and Experimental Botany, Vol. 48, No. 1, 2002, pp. 75-92.
http://dx.doi.org/10.1016/S0098-8472(02)00013-8
[12] L. V. Kochian, O. A. Hoeckenga and M. A. Pineros, “How Do Crop Plants Tolerate Acid Soils? Mechanisms of Aluminium Tolerance and Phosphorus Efficiency,” Annual Review of Plant Biology, Vol. 55, 2004, pp. 459-493.
http://dx.doi.org/10.1146/annurev.arplant.55.031903.141655
[13] L. V. Kochian, M. A. Pineros and O. A. Hoekenga, “The Physiology, Genetics and Molecular Biology of Plant Aluminum Resistance and Toxicity,” Plant and Soil, Vol. 274, No. 1-2, 2005, pp. 175-195.
http://dx.doi.org/10.1007/s11104-004-1158-7
[14] J. F. Ma, “Role of Organic Acids in Detoxification of Aluminum in Higher Plants,” Plant and Cell Physiology, Vol. 41, No. 4, 2000, pp. 383-390.
http://dx.doi.org/10.1093/pcp/41.4.383
[15] J. F. Ma, P. R. Ryan and E. Delhaize, “Aluminium Tolerance in Plants and the Complexing Role of Organic Acids,” Trends in Plant Science, Vol. 6, No. 6, 2001, pp. 273-278.
http://dx.doi.org/10.1016/S1360-1385(01)01961-6
[16] P. R. Ryan, E. Delhaize and D. L. Jones, “Function and Mechanism of Organic Anion Exudation from Plant Roots,” Annual Review of Plant Physiology and Plant Molecular Biology, Vol. 52, No. 1, 2001, pp. 527-560.
http://dx.doi.org/10.1146/annurev.arplant.52.1.527
[17] S. Miyasaka, J. Bute, R. Howell and C. D. Foy, “Mechanisms of Aluminum Tolerance in Snapbeans (Root Exudation of Citric Acid),” Plant Physiology, Vol. 96, 1991, pp. 737-743. http://dx.doi.org/10.1104/pp.96.3.737
[18] E. Delhaize, S. Craig, C. D. Beaton, R. J. Bennet, V. C. Jagadish and P. J. Randall, “Aluminum Tolerance in Wheat (Triticumaestivum L.): I. Uptake and Distribution of Aluminum in Root Apices,” Plant Physiology, Vol. 103, No. 3, 1993, pp. 685-693.
[19] E. Delhaize, S. Craig, C. D. Beaton, R. J. Bennet, V. C. Jagadish and P. J. Randall, “Aluminum Tolerance in Wheat (Triticumaestivum L.) II. Aluminum-Stimulated Excretion of Malic Acid from Root Apices,” Plant Physiology, Vol. 103, No. 3, 1993, pp. 695-702.
[20] D. L. Jones and L. V. Kochian, “Aluminum Inhibition of the Inositol 1,4,5-Trisphosphate Signal Transduction Pathway in Wheat Roots: A Role in Aluminum Toxicity?” Plant Cell, Vol. 7, No. 11, 1995, pp. 1913-1922.
[21] A. Haug and V. Vitorello, “Aluminum Coordination to Calmodulin: Thermodynamic and Kinetic Aspects,” Coordination Chemistry, Vol. 149, No. 6931, 1996, pp. 113-124.
[22] T. Watanabe and M. Osaki, “Mechanisms of Adaptation to High Aluminum Condition in Native Plant Species Growing in Acid Soils: A Review,” Communications in Soil Sciences and Plant Analysis, Vol. 33, No. 7-8, 2002, pp. 1247-1260. http://dx.doi.org/10.1081/CSS-120003885
[23] T. Mossor-Pietraszewska, M. Kwit and M. Legiewicz, “The Influence of Aluminium Ions on Activity Changes of Some Dehydrogenases and Amino Transferases in Yellow Lupine,” Biological Bulletin of Poznañ, Vol. 34, No. 1, 1997, pp. 47-48.
[24] S. Lindberg, K. Szynkier and M. Greger, “Aluminum Effects on Transmembrane Potential in Cells of Fibrous Roots of Sugar Beet,” Plant Physiology, Vol. 83, No. 1, 1991, pp. 54-62.
http://dx.doi.org/10.1111/j.1399-3054.1991.tb01281.x
[25] L. A. Papernik and L. V. Kochian, “Possible Involvement of Aluminum-Induced Electrical Signals in Aluminum Tolerance in Wheat,” Plant Physiology, Vol. 115, No. 2, 1997, pp. 657-667.
[26] S. C. Miyasaka, L. V. Kochian, J. E. Shaff and C. D. Foy, “Mechanisms of Aluminum Tolerance in Wheat (An Investigation of Genotypic Differences in Rhizosphere pH, K+, and H+ Transport and Root-Cell Membrane Potentials),” Plant Physiology, Vol. 91, No. 3, 1989, pp. 1188-1196. http://dx.doi.org/10.1104/pp.91.3.1188
[27] Z. Rengel and R. J. Reid, “Uptake of Al across the Plasma Membrane of Plant Cells,” Plant and Soil, Vol. 192, No. 1, 1997, pp. 31-35.
http://dx.doi.org/10.1023/A:1004265913770
[28] Q. Liu, J. L. Yang, L. S. He, Y. Y. Li and S. J. Zheng, “Effect of Aluminum on Cell Wall, Plasma Membrane, Antioxidants and Root Elongation in Triticale,” Biologia Plantarum, Vol. 52, 2008, pp. 87-92.
http://dx.doi.org/10.1007/s10535-008-0014-7
[29] S. Marienfeld, H. Lehmann and R. Stelzer, “Ultrastructural Investigations and EDX-Analyses of Al-Treated Oat (Avena sativa) Roots,” Plant and Soil, Vol. 171, No. 1, 1995, pp. 167-173.
http://dx.doi.org/10.1007/BF00009582
[30] N. Schmohl and W. J. Horst, “Cell Wall Pectin Content Modulates Aluminium Sensitivity of Zea mays (L.) Cells Grown in Suspension Culture,” Plant Cell and Environment, Vol. 23, No. 7, 2000, pp. 735-742.
http://dx.doi.org/10.1046/j.1365-3040.2000.00591.x
[31] Y. C. Chang, Y. Yamamoto and H. Matsumoto, “Accumulation of Aluminium in the Cell Wall Pectin in Cultured Tobacco (Nicotianatabacum L.) Cells Treated with a Combination of Aluminium and Iron,” Plant Cell and Environment, Vol. 22, No. 8, 1999, pp. 1009-1010.
http://dx.doi.org/10.1046/j.1365-3040.1999.00467.x
[32] F. P. C. Blamey, “The Role of the Root Cell Wall in Aluminium Toxicity,” In: N. Ae, J. Arihara, K. Okada and A. Srinivasan, Eds., Plant Nutrient Acquisition, New Perspectives, Springer Verlag, New York, 2001, pp. 201-226.
http://dx.doi.org/10.1007/978-4-431-66902-9_9
[33] H. Matsumoto, S. Morimura and E. Takahashi, “Less Involvement of Pectin in the Precipitation of Aluminum in Pea Root,” Plant and Cell Physiology, Vol. 18, 1977, pp. 325-335.
[34] M. Rincon and R. Gonzales, “Aluminum Partitioning Intact Roots of Aluminium-Tolerant and Aluminum-Sensitive Wheat (Triticumaestivum L.) Cultivars,” Plant Physiology, Vol. 99, No. 3, 1992, pp. 1021-1022.
http://dx.doi.org/10.1104/pp.99.3.1021
[35] A. Tabuchi and H. Matsumoto, “Changes in Cell-Wall Properties of Wheat (Triticumaestivum) Roots during Aluminum-Induced Growth Inhibition,” Physiology of Plant, Vol. 112, 2001, pp. 353-358.
http://dx.doi.org/10.1034/j.1399-3054.2001.1120308.x
[36] A. J. Kuhn, W. H. Schroder and J. Bauch, “The Kinetics of Calcium and Magnesium Entry into Mycorrhizal Spruce Roots,” Planta, Vol. 210, No. 3, 2000, pp. 488-496.
http://dx.doi.org/10.1007/PL00008156
[37] R. J. Reid, Z. Rengel and F. A. Smith, “Membrane Fluxes and Comparative Toxicities of Aluminium, Scandium and Gallium,” Journal of Experimental Botany, Vol. 47, No. 12, 1996, pp. 1881-1888.
http://dx.doi.org/10.1093/jxb/47.12.1881
[38] G. J. Taylor, J. L. Stephens, D. B. Hunte, P. M. Bertsch, D. Elmore, Z. Rengel and R. Reid, “Direct Measurement of Aluminium Uptake and Distribution in Single Cells of Chara corallina,” Plant Physiology, Vol. 123, No. 3, 2000, pp. 987-996.
http://dx.doi.org/10.1104/pp.123.3.987
[39] M. A. Akeson, D. N. Munns and R. G. Burau, “Adsorption of Al3+ to Phosphotidylcholine Vesicles,” Biochimica et Biophysica Acta, Vol. 986, No. 1, 1989, pp. 33-40.
[40] T. B. Kinraide, P. R. Ryan and L. V. Kochian, “Interactive Effects of Al3+, H+ and Other Cations on Root Elongation Considered in Terms of Cell-Surface Electrical Potential,” Plant Physiology, Vol. 99, No. 4, 1992, pp. 1461-1468. http://dx.doi.org/10.1104/pp.99.4.1461
[41] S. J. Ahn, M. Sivaguru, G. C. Chung, Z. Rengel and H Matsumoto, “Aluminium-Induced Growth Inhibition Is Associated with Impaired Efflux and Influx of H+ across the Plasma Membrane in Root Apices of Squash (Cucurbita pepo),” Journal of Experimental Botany, Vol. 53, No. 376, 2002, pp. 1959-1966.
http://dx.doi.org/10.1093/jxb/erf049
[42] C. Poschenrieder, M. Llugany and J. Barcelo, “Short-Term Effects of pH and Aluminium on Mineral Nutrition in Maize Varieties Differing in Proton and Aluminium Tolerance,” Journal of Plant Nutrition, Vol. 18, No. 7, 1995, pp. 1495-1507.
http://dx.doi.org/10.1080/01904169509364998
[43] M. A. Piňeros and L. V. Kochian, “A Patch-Clamp Study on the Physiology of Aluminum Toxicity and Aluminum Tolerance in Maize. Identification and Characterization of Al3+-Induced Anion Channels,” Plant Physiology, Vol. 125, No. 1, 2001, pp. 292-305.
http://dx.doi.org/10.1104/pp.125.1.292
[44] E. D. Mariano and W. G. Keltjens, “Long-Term Effects of Aluminium Exposure on Nutrient Uptake by Maize Genotypes Differing in Aluminium Resistance,” Journal of Plant Nutrition, Vol. 28, No. 2, 2005, pp. 323-333.
http://dx.doi.org/10.1081/PLN-200047625
[45] M. Shivaguru, T. Fujiwara, J. Samaj, F. Baluska, Z. Yang, H. Osawa, T. Maeda, T. Mori, D. Volkmann and H. Matsumoto, “Aluminum-Induced 1→3-β-D-Glucan Inhibits Cell-to-Cell Trafficking of Molecules through Plasmodesmata. A New Mechanism of Aluminum Toxicity in Plants,” Plant Physiology, Vol. 124, No. 3, 2000, pp. 991-1006. http://dx.doi.org/10.1104/pp.124.3.991
[46] D. L. Godbold and G. Jentschke, “Aluminium Accumulation in Root Cell Walls Coincides with Inhibition of Root Growth But Not with Inhibition of Magnesium Uptake in Norway Spruce,” Physiologia Plantarum, Vol. 102, No. 4, 1998, pp. 553-560.
http://dx.doi.org/10.1034/j.1399-3054.1998.1020410.x
[47] I. R. Silva, T. J. Smyth, D. F. Moxley, T. E. Carter, N. S. Allen and T. W. Rufty, “Aluminum Accumulation at Nuclei of Cells in the Root Tip. Fluorescence Detection Using Lumogallion and Confocal Laserscanning Microscopy,” Plant Physiology, Vol. 123, No. 2, 2000, pp. 543-552. http://dx.doi.org/10.1104/pp.123.2.543
[48] O. Babourina and Z. Rengel, “Uptake of Aluminium into Arabidopsis Root Cells Measured by Fluorescent Lifetime Imaging,” Annals of Botany, Vol. 104, No. 1, 2009, pp. 189-195. http://dx.doi.org/10.1093/aob/mcp098
[49] J. X. Xia, N. Yamaji, T. Kasai and J. A. F. Ma, “Plasma Membrane-Localized Transporter for Aluminum in Rice,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 107, No. 43, 2010, pp. 18381-18385. http://dx.doi.org/10.1073/pnas.1004949107
[50] J. Bose, O. Babourina, S. Shabala and Z. Rengel, “Aluminium-Dependent Dynamics of Ion Transport in Arabidopsis: Specificity of Low pH and Aluminium Responses,” Physiologia Plantarum, Vol. 139, 2010, pp. 401-412.
[51] C. Plieth, B. Sattelmacher, U. P. Hansen and M. R. Knight, “Low-pH Mediated Elevations in Cytosolic Calcium Are Inhibited by Aluminium: A Potential Mechanism for Aluminium Toxicity,” The Plant Journal, Vol. 18, No. 6, 1999, pp. 643-650.
http://dx.doi.org/10.1046/j.1365-313x.1999.00492.x
[52] Z. Rengel and W. H. Zhang, “Role of Dynamics of Intracellular Calcium in Aluminium Toxicity Syndrome,” New Phytologist, Vol. 159, No. 2, 2003, pp. 295-314.
http://dx.doi.org/10.1046/j.1469-8137.2003.00821.x
[53] J. Bose, O. Babourina, S. Shabala and Z. Rengel, “Aluminium-Induced Ion Transport in Arabidopsis: The Relationship between Al Tolerance and Root Ion Flux,” Journal of Experimental Botany, Vol. 61, No. 11, 2010, pp. 3163-3175. http://dx.doi.org/10.1093/jxb/erq143
[54] S. J. Ahn, M. Sivaguru, H. Osawa, G. G. Chung and H. Matsumoto, “Aluminum Inhibits the H+-ATPase Activity by Permanently Altering the Plasma Membrane Surface Potentials in Squash Roots,” Plant Physiology, Vol. 126, No. 4, 2001, pp. 1381-1390.
http://dx.doi.org/10.1104/pp.126.4.1381
[55] P. R. Ryan, J. E. Shaff and L. V. Kochian, “Aluminum Toxicity in Roots (Correlation among Ionic Currents, Ion Fluxes, and Root Elongation in Aluminum-Sensitive and Aluminum Tolerant Wheat Cultivars),” Plant Physiology, Vol. 99, No. 3, 1992, pp. 1193-1200.
http://dx.doi.org/10.1104/pp.99.3.1193
[56] M. Shivaguru, F. Baluska, D. Volkmann, H. H. Felle and W. J. Horst, “Impacts of Aluminum on the Cytoskeleton of the Maize Root Apex. Short-Term Effects on the Distal Part of the Transition Zone,” Plant Physiology, Vol. 119, No. 3, 1999, pp. 1073-1082.
http://dx.doi.org/10.1104/pp.119.3.1073
[57] M. Sasaki, Y. Yamamoto and H. Matsumoto, “Aluminum Inhibits Growth and Stability of Cortical Microtubules in Wheat (Triticum aestivum) Roots,” Soil Science Plant Nutrition, Vol. 43, No. 2, 1997, pp. 469-472.
http://dx.doi.org/10.1080/00380768.1997.10414772
[58] M. Sasaki, Y. Yamamoto, J. F. Ma and H. Matsumoto, “Early Events Induced by Aluminum Stress in Elongating Cells of Wheat Roots,” Soil Science Plant Nutrition, Vol. 78, 1997, pp. 1009-1014.
[59] E. J. D. Blancaflor and S. Gilroy, “Alterations in the Cytoskeleton Accompany Aluminum-Induced Growth Inhibition and Morphological Changes in Primary Roots of Maize,” Plant Physiology, Vol. 118, No. 1, 1998, pp. 159-172. http://dx.doi.org/10.1104/pp.118.1.159
[60] S. Grabski, E. Arnoys, B. Busch and M. Schindler, “Regulation of Actin Tension in Plant Cells by Kinases and Phosphatases,” Plant Physiology, Vol. 116, No. 1, 1998, pp. 279-290. http://dx.doi.org/10.1104/pp.116.1.279
[61] W. J. Horst, N. Schmohl, M. Kollmeier, F. Baluska and M. Sivaguru, “Does Aluminum Affect Root Growth of Maize through Interaction with the Cell Wall—Plasma Membrane—Cytoskeleton Continuum?” Plant and Soil, Vol. 215, No. 2, 1999, pp. 163-174.
http://dx.doi.org/10.1023/A:1004439725283
[62] G. Frantzios, B. Galatis and P. Apostolakos, “Aluminum Effects on Microtubule Organization in Dividing Root-Tip Cells of Triticum turgidum. I. Mitotic Cells,” New Phytologist, Vol. 145, No. 2, 2000, pp. 211-224.
http://dx.doi.org/10.1046/j.1469-8137.2000.00580.x
[63] G. Frantzios, B. Galatis and P. Apostolakos, “Aluminum Effects on Microtubule Organization in Dividing Root-Tip Cells of Triticum turgidum. II. Cytokinetic Cells,” Journal of Plant Research, Vol. 114, No. 2, 2001, pp. 157-170. http://dx.doi.org/10.1007/PL00013979
[64] L. Alessa and L. Oliveira, “Aluminum Toxicity Studies in Vaucheria longicaulis var. Macounii (Xanthophyta, Tribophyceae). II. Effects on the F-Actin Array,” Environmental and Experimental Botany, Vol. 45, No. 3, 2001, pp. 223-237.
http://dx.doi.org/10.1016/S0098-8472(00)00088-5
[65] K. Schwarzerová, S. Zelenková, P. Nick and Z. Opatrny, “Aluminum-Induced Rapid Changes in the Microtubular Cytoskeleton of Tobacco Cell Lines,” Plant and Cell Physiology, Vol. 43, No. 2, 2002, pp. 207-216.
http://dx.doi.org/10.1093/pcp/pcf028
[66] M. Sivaguru, S. Pike, W. Gassmann and T. I. Baskin, “Aluminum Rapidly Depolymerizes Cortical Microtubules and Depolarizes the Plasma Membrane: Evidence That These Responses Are Mediated by a Glutamate Receptor,” Plant and Cell Physiology, Vol. 44, 2003, pp. 667-675.
[67] S. Grabski and S. M. Chindler, “Aluminum Induces Rigor within the Actin Network of Soybean Cells,” Plant Physiology, Vol. 108, No. 3, 1995, pp. 897-901.
[68] A. Tani, C. Inoue, Y. Tanaka, Y. Yamamoto, H. Kondo and S. Hiradate, “The Crucial Role of Mitochondrial Regulation in Adaptive Aluminium Resistance in Rhodotorula glutinis,” Microbiology, Vol. 154, No. 11, 2008, pp. 3437-3446.
http://dx.doi.org/10.1099/mic.0.2007/016048-0
[69] N. G. Marinos, “Studies on Submicroscopic Aspects of Mineral Deficiencies. II. Nitrogen, Potassium, Sulfur, Phosphorus, and Magnesium Deficiencies in the Shoot Apex of Barley,” American Journal of Botany, Vol. 50, 1963, No. 10, pp. 998-1005. http://dx.doi.org/10.2307/2439907
[70] I. Cakmak and E. A. Kirkby, “Role of Magnesium in Carbon Partitioning and Alleviating Photo-Oxidative Damage,” Plant Physiology, Vol. 133, No. 4, 2008, pp. 692-704.
http://dx.doi.org/10.1111/j.1399-3054.2007.01042.x
[71] Y. Yamamoto, Y. Kobayashi, S. R. Devi, S. Rikiishi and H. Matsumoto, “Aluminum Toxicity Is Associated with Mitochondrial Dysfunction and the Production of Reactive Oxygen Species in Plant Cells,” Plant Physiology, Vol. 128, No. 1, 2002, pp. 63-72.
http://dx.doi.org/10.1104/pp.010417
[72] E. Darko, H. Ambrus, E. Stefanovits-Banyai, J. Fodor, F. Bakos and B. Barnaba, “Aluminium Toxicity, Al Tolerance and Oxidative Stress in an Al-Sensitive Wheat Genotype and in Al-Tolerant Lines Developed by in Vitro Microspore Selection,” Plant Science, Vol. 166, No. 3, 2004, pp. 583-591.
http://dx.doi.org/10.1016/j.plantsci.2003.10.023
[73] L. Tamás, M. Simonovicová, J. Huttová and I. Mistrík, “Aluminium Stimulated Hydrogen Peroxide Production of Germinating Barley Seeds,” Environmental and Experimental Botany, Vol. 51, No. 3, 2004, pp. 281-288.
http://dx.doi.org/10.1016/j.envexpbot.2003.11.007
[74] D. L. Jones, E. B. Blancaflor, L. V. Kochian and S. Gilroy, “Plant, Spatial Coordination of Aluminium Uptake, Production of Reactive Oxygen Species, Callose Production and Wall Rigidification in Maize Roots,” Cell and Environment, Vol. 29, No. 7, 2006, pp. 1309-1318.
http://dx.doi.org/10.1111/j.1365-3040.2006.01509.x
[75] O. Babourina, L. Ozturk, I. Cakmak and Z. Rengel, “Reactiveoxygen Species Production in Wheat Roots Is Not Linked with Changes in H+ Fluxes during Acidic and Aluminium Stresses,” Plant Signaling and Behavior, Vol. 1, No. 2, 2006.
http://dx.doi.org/10.4161/psb.1.2.2591
[76] K. Tahara, T. Yamanoshita, M. Norisada, I. Hasegawa, H. Kashima, S. Sasaki and K. Kojima, “Aluminum Distribution and Reactive Oxygen Species Accumulation in Root Tips of Two Melaleuca Trees Differing in Aluminum Resistance,” Plant and Soil, Vol. 307, No. 1-2, 2008, pp. 167-178. http://dx.doi.org/10.1007/s11104-008-9593-5
[77] E. Rezabal, J. M. Mercero, X. Lopez and J. M. Ugalde, “A Study of the Coordination Shell of Aluminum (III) and Magnesium (II) in Model Protein Environments: Thermodynamics of the Complex Formation and Metal Exchange Reactions,” Journal of Inorganic Biochemistry, Vol. 100, No. 3, 2006, pp. 374-384.
http://dx.doi.org/10.1016/j.jinorgbio.2005.12.007
[78] R. J. Mailloux, R. Hamel and V. D. Appanna, “Aluminum Toxicity Elicits a Dysfunctional TCA Cycle and Succinate Accumulation in Hepatocytes,” Journal of Biochemical and Molecular Toxicology, Vol. 20, No. 4, 2006, pp. 198-208. http://dx.doi.org/10.1002/jbt.20137
[79] C. D. Foy, J. A. Duke and T. E. Devine, “Tolerance of Soybean Germplasm to an Acid Tatum Subsoil,” Journal of Plant Nutrition, Vol. 15, No. 5, 1992, pp. 527-547.
http://dx.doi.org/10.1080/01904169209364339
[80] R. Minocha, S. C. Minocha, S. L. Long and W. C. Shortle, “Effects of Aluminium on DNA Synthesis, Cellular Polyamines, Polyamine Biosynthetic Enzymes and Inorganic Ions in Cell Suspension Cultures of a Woody Plant, Catharanthus roseus,” Physiology of Plant, Vol. 85, No. 3, 1992, pp. 417-424.
http://dx.doi.org/10.1111/j.1399-3054.1992.tb05806.x
[81] C. D. Foy, “Tolerance of Barley Cultivars to Anacid, Aluminium-Toxic Subsoil Related to Mineral Element Concentrations of Their Shoots,” Journal of Plant Nutrition, Vol. 19, No. 10-11, 1996, pp. 1361-1380.
http://dx.doi.org/10.1080/01904169609365205
[82] D. T. Krizek, C. D. Foy and R. M. Mirecki, “Influence of Aluminium Stress on Shoot and Root Growth of Contrasting Genotypes of Coleus,” Journal of Plant Nutrition, Vol. 20, No. 9, 1997, pp. 1045-1060.
http://dx.doi.org/10.1080/01904169709365317
[83] L. Galvez and R. B. Clark, “Nitrate and Ammonium Uptake and Solution pH Changes for Al-Tolerant and AlSensitive Sorghum (Sorghum bicolour) Genotypes Grown with and without Aluminium,” Plant and Soil, Vol. 134, No. 1, 1991, pp. 179-188.
[84] R. P. Durieux, W. A. Jackson, E. J. Kamprath and R. H. Moll, “Inhibition of Nitrate by Aluminium in Maize,” Plant and Soil, Vol. 151, No. 1, 1993, pp. 97-104.
http://dx.doi.org/10.1007/BF00010790
[85] W. G. Keltjens and K. Tan, “Interactions between Aluminium, Magnesium and Calcium with Different Monocotyledonous and Dicotyledonous Plant Species,” Plant and Soil, Vol. 155-156, No. 1, 1993, pp. 458-488.
http://dx.doi.org/10.1007/BF00025089
[86] E. Olivaresa, E. Peñaa, E. Marcanob, J. Mostaceroc, G. Aguiara, M. Beníteza and E. Rengifoa, “Aluminum Accumulation and Its Relationship with Mineral Plant Nutrients in 12 Pteridophytes from Venezuela,” Environmental and Experimental Botany, Vol. 65, No. 1, 2009, pp. 132-141.
http://dx.doi.org/10.1016/j.envexpbot.2008.04.002
[87] E. D. Mariano, R. A. Jorge, W. G. Keltjens and M. Menossi, “Metabolism and Root Exudation of Organic Acid Anions under Aluminium Stress,” Brazilian Journal of Plant Physiology, Vol. 17, No. 1, 2005, pp. 157-172.
http://dx.doi.org/10.1590/S1677-04202005000100013
[88] A. Giannakoula, M. Moustakas, P. Mylona, I. Papadakis and T. Yupsanis, “Aluminum Tolerance in Maize is Correlated with Increased Levels of Mineral Nutrients, Carbohydrates and Proline, and Decreased Levels of Lipid Peroxidation and Al Accumulation,” Journal of Plant Physiology, Vol. 165, No. 4, 2008, pp. 385-396.
http://dx.doi.org/10.1016/j.jplph.2007.01.014
[89] S. Silva, O. Pinto-Carnide, P. Martins-Lopes, M. Matos, H. Guedes-Pinto and C. Santos, “Differential Aluminium Changes on Nutrient Accumulation and Root Differentiation in an Al Sensitive vs. Tolerant Wheat,” Environmental and Experimental Botany, Vol. 68, No. 1, 2010, pp. 91-98. http://dx.doi.org/10.1016/j.envexpbot.2009.10.005
[90] T. W. Rufty Jr., C. T. Mackown, D. B. Lazof and T. E. Carter, “Effects of Aluminium on Nitrate Uptake and Assimilation,” Plant Cell and Environment, Vol. 18, 1995, pp. 1325-1331.
[91] H. Calba and B. Jaillard, “Effect of Aluminium on Ion Uptake and H+ Release by Maize,” New Phytologist, Vol. 137, No. 4, 1997, pp. 607-616.
http://dx.doi.org/10.1046/j.1469-8137.1997.00858.x
[92] C. D. Foy and A. L. Fleming, “Aluminum Tolerance of Two Wheat Cultivars Related to Nitrate Reductase Activities,” Journal of Plant Nutrition, Vol. 5, No. 11, 1982, pp. 1313-1333.
http://dx.doi.org/10.1080/01904168209363064
[93] L. W. Gallagher, K. M. Soliman, C. O. Qualset, R. C. Huffaker and D. W. Rains, “Major Gene Control of Nitrate Reductase Activity in Common Wheat,” Crop Science, Vol. 20, No. 6, 1980, pp. 717-721.
http://dx.doi.org/10.2135/cropsci1980.0011183X002000060010x
[94] B. E. Nichol, L. A. Oliveira, A. D. M. Glass and M. Y. Siddiqi, “The Effects of Aluminum on the Influx of Calcium, Potassium, Ammonium, Nitrate, and Phosphate in an Aluminum-Sensitive Cultivar of Barley (Hordeumvulgare L.),” Plant Physiology, Vol. 101, No. 4, 1993, pp. 1263-1266.
[95] J. W. Huang, J. E. Shaff, D. L. Grunes and L. V. Kochian, “Aluminum Effects on Calcium Fluxes at the Root Apex of Aluminum-Tolerant and Aluminum-Sensitive Wheat Cultivars,” Plant Physiology, Vol. 98, No. 1, 1992, pp. 230-237. http://dx.doi.org/10.1104/pp.98.1.230
[96] P. R. Furlani and R. B. Clark, “Screening Sorghum for Aluminium Tolerance in Nutrient Solutions,” Agronomy Journal, Vol. 73, No. 4, 1981, pp. 587-594.
http://dx.doi.org/10.2134/agronj1981.00021962007300040005x
[97] R. B. Clarka, P. A. Pierb, D. Knudsenc and J. W. Maranvillec, “Effect of Trace Element Deficiencies and Excesses on Mineral Nutrients in Sorghum,” Journal of Plant Nutrition, Vol. 3, No. 1-4, 1981, pp. 357-374.
http://dx.doi.org/10.1080/01904168109362844
[98] H. Marschner, “Mineral Nutrition of Higher Plants,” 2nd Edition, Academic Press, London, 1995.
[99] A. Franka, R. Wibomb and R. Danielssonc, “Myocardial Cytochrome C Activity in Swedish Moose (Alcesalces L.) Affected by Molybdenosis,” The Science of the Total Environment, Vol. 290, No. 1-3, 2002, pp. 121-129.
http://dx.doi.org/10.1016/S0048-9697(01)01077-4
[100] R. L. Fox and E. J. Kamprath, “Phosphate Sorption Isotherms for Evaluating the Phosphate Requirements of Soils,” Soil Science Society of America Journal, Vol. 34, No. 6, 1970, pp. 902-907.
http://dx.doi.org/10.2136/sssaj1970.03615995003400060025x
[101] D. A. Barber, M. Ebert and N. T. S. Evans, “The Movement of 15O through Barley and Rice Plants,” Journal of Experimental Botany, Vol. 13, No. 3, 1962, pp. 397-403.
http://dx.doi.org/10.1093/jxb/13.3.397
[102] T. R. Bates and J. P. Lynch, “Stimulation of Root Hair Elongation in Arabidopsis thaliana by Low Phosphorus Availability,” Plant Cell Environment, Vol. 19, No. 5, 1996, pp. 529-538.
http://dx.doi.org/10.1111/j.1365-3040.1996.tb00386.x
[103] D. Foehse and A. Jungk, “Influence of Phosphate and Nitrate Supply on Root Hair Formation of Rape, Spinach and Tomato Plants,” Plant and Soil, Vol. 74, No. 3, 1983, pp. 359-368. http://dx.doi.org/10.1007/BF02181353
[104] E. Smitha, R. Naidu and A. M. Alstonb, “Chemistry of Inorganic Arsenic in Soils: II. Effect of Phosphorus, Sodium, and Calcium on Arsenic Sorption,” Journal of Environmental Quality, Vol. 31, No. 2, 2002, pp. 557-563.
http://dx.doi.org/10.2134/jeq2002.0557
[105] Y. Yamamoto, Y. Kobayashi, S. R. Devi, S. Rikiishi and H. Matsumoto, “Oxidative Stress Triggered by Aluminum in Plant Roots,” Plant Soil, Vol. 255, No. 1, 2003, pp. 239-243. http://dx.doi.org/10.1023/A:1026127803156
[106] P. R. S. Boscolo, M. Menossi and R. A. Jorge, “Aluminum-Induced Oxidative Stress in Maize,” Phytochemistry, Vol. 62, No. 2, 2003, pp. 181-189.
http://dx.doi.org/10.1016/S0031-9422(02)00491-0
[107] M. C. Kuo and C. H. Kao, “Aluminum Effects on Lipid Peroxidation and Antioxidative Enzyme Activities in Rice Leaves,” Biologia Plantarum, Vol. 46, No. 1, 2003, pp. 149-152. http://dx.doi.org/10.1023/A:1022356322373
[108] Y. Yamamoto, Y. Kobayashi and H. Matsumoto, “Lipid Peroxidation Is an Early Symptom Triggered by Aluminum, But Not the Primary Cause of Elongation Inhibition in Pea Roots,” Plant Physiology, Vol. 125, No. 1, 2001, pp. 199-208. http://dx.doi.org/10.1104/pp.125.1.199
[109] M. A. R. Rodriguez Milla, E. Butler, A. R. Huete, C. F. Wilson, O. Anderson and J. P. Gustafson, “Expressed Sequenced Tag-Based Gene Expression Analysis under Aluminum Stress in Rye,” Plant Physiology, Vol. 130, No. 4, 2002, pp. 1706-1716.
http://dx.doi.org/10.1104/pp.009969
[110] K. Apel and H. Hirt, “Reactive Oxygen Species: Metabolism, Oxidative Stress, and Signal Transduction,” Annual Review of Plant Biology, Vol. 55, 2004, pp. 373-399.
http://dx.doi.org/10.1146/annurev.arplant.55.031903.141701
[111] B. Meriga, H. I. Attitalla, M. Ramgopal, M. Ediga and P. B. Kavikishor, “Differential Tolerance to Aluminium Toxicity in Rice Cultivars: Involvement of Antioxidative Enzymes and Possible Role of Aluminium Resistant Locus,” Academy Journal of Plant Science, Vol. 3, No. 2, 2010, pp. 53-63.
[112] P. Dundek, L. Holik, T. Rohlik, V. Vranova, K. Rejsek and P. Formanek, “Methods of Plant Root Exudates Analysis: A Review,” Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Vol. 59, 2011, pp. 241-246.
[113] J. Bose, O. Babourina and Z. Rengel, “Role of Magnesium in Alleviation of Aluminium Toxicity in Plants,” Journal of Experimental Botany, Vol. 62, No. 7, 2011, pp. 2251-2264. http://dx.doi.org/10.1093/jxb/erq456
[114] V. M. M. Achary, N. L. Parinandi and B. B. Panda, “Mutation Research/Genetic Toxicology and Environmental Mutagenesis,” Mutation Research, Vol. 751, No. 2, 2013, pp. 130-138.
http://dx.doi.org/10.1016/j.mrgentox.2012.12.008
[115] M. P. C. Rosa, V. Vives, I. Z. Sara, F. L. C. María, V. Muñoz and G. C. Aurelio, “Biotechnological Approaches to Study Plant Responses to Stress,” BioMed Research International, Vol. 2013, 2013, Article ID: 654120,
[116] G. Zhang, J. J. Slaski, D. J. Archambault and G. J. Taylor, “Alteration of Plasma Membrane Lipids in Aluminum-Resistant and Aluminum-Sensitive Wheat Genotypes in Response to Aluminum Stress,” Physiologia Plantarum, Vol. 99, No. 2, 1997, pp. 302-308.
http://dx.doi.org/10.1111/j.1399-3054.1997.tb05416.x
[117] S. Ishikawa and T. Wagatsuma, “Plasma Membrane Permeability of Root-Tip Cells Following Temporary Exposure to Al Ions Is a Rapid Measure of Al Tolerance among Plant Species,” Plant Cell Physiology, Vol. 39, No. 5, 1998, pp. 516-525.
http://dx.doi.org/10.1093/oxfordjournals.pcp.a029399
[118] K. Liu and S. Luan, “Internal Aluminum Block of Plant Inward K+ Channels,” Plant Cell, Vol. 13, No. 6, 2001, pp. 1453-1465.
[119] D. L. Jones and L. V. Kochian, “Aluminum Interaction with Plasma Membrane Lipids and Enzyme Metal Binding Sites and Its Potential Role in Al Cytotoxicity,” FEBS Letters, Vol. 400, No. 1, 1997, pp. 51-57.
http://dx.doi.org/10.1016/S0014-5793(96)01319-1
[120] P. C. Kerridge and W. E. Konstad, “Evidence of Genetic Resistance to Aluminum Toxicity in Wheat (Triticumaestivum Vill., Host),” Agronomy Journal, Vol. 60, No. 6, 1968, pp. 710-711.
http://dx.doi.org/10.2134/agronj1968.00021962006000060041x
[121] W. A. Berzonsky, “The Genomic Inheritance of Aluminum Tolerance in ‘Atlas 66’ Wheat,” Genome, Vol. 35, No. 4, 1992, pp. 689-693.
http://dx.doi.org/10.1139/g92-104
[122] J. P. Johnson, B. F. Carver and V. C. Baligar, “Expression of Aluminum Tolerance Transferred from Atlas 66 to Hard Winter Wheat,” Crop Science, Vol. 37, No. 1, 1997, pp. 103-108.
http://dx.doi.org/10.2135/cropsci1997.0011183X003700010016x
[123] E. Polle, C. F. Konzak and J. A. Kittrick, “Visual Detection of Aluminum Tolerance Levels in Wheat by Hematoxylin Staining,” Crop Science, Vol. 18, No. 5, 1978, pp. 823-827.
http://dx.doi.org/10.2135/cropsci1978.0011183X001800050035x
[124] P. R. Ryan, E. Delhaize and P. J. Randall, “Characterization of Al-Stimulated Efflux of Malate from the Apices of Al Tolerant Wheat Roots,” Planta, Vol. 196, No. 1, 1995, pp. 103-110. http://dx.doi.org/10.1007/BF00193223
[125] P. R. Ryan, E. Delhaize and P. J. Randall, “Malate Efflux from Root Apices and Tolerance to Aluminum Are Highly Correlated in Wheat,” Australian Journal of Plant Physiology, Vol. 22, No. 4, 1995, pp. 531-536.
http://dx.doi.org/10.1071/PP9950531
[126] J. F. Ma, S. J. Zheng, S. Hiradate and H. Matsumoto, “Detoxifying Aluminum with Buckwheat,” Nature, Vol. 390, No. 6660, 1997, pp. 569-570.
http://dx.doi.org/10.1038/37518
[127] J. F. Ma, S. J. Zheng and H. Matsumoto, “Specific Secretion of Citric Acid Induced by Al Stress in Cassia tora L.,” Plant Cell Physiology, Vol. 38, No. 9, 1997, pp. 1019-1025.
http://dx.doi.org/10.1093/oxfordjournals.pcp.a029266
[128] E. Delhaize, P. R. Ryan and P. J. Randall, “Aluminum Tolerance in Wheat (Triticum aestivum L.) (II. Aluminum-Stimulated Excretion of Malic Acid from Root Apices),” Plant Physiology, Vol. 103, No. 3, 1993, pp. 695-702.
[129] D. M. Pellet, D. L. Grunes and L. V. Kochian, “Organic acid Exudation as an Aluminum Tolerance Mechanism in Maize (Zea mays L.),” Planta, Vol. 196, No. 4, 1995, pp. 788-795. http://dx.doi.org/10.1007/BF01106775
[130] J. F. Ma, S. Hiradate, K. Nomoto, T. Iwashita and H. Matsumoto, “Internal Detoxification Mechanism of Al in Hydrangea: Identification of Al Form in Leaves,” Plant Physiology, Vol. 113, No. 1, 1997, pp. 1033-1039.
[131] Z. Ma and S. C. Miyasaka, “Oxalate Exudation by Taro in Response to Al,” Plant Physiology, Vol. 118, No. 1, 1998, pp. 861-865. http://dx.doi.org/10.1104/pp.118.3.861
[132] S. J. Zheng, J. F. Ma and H. Matsumoto, “High Aluminum Resistance in Buckwheat: Ι. Al-Induced Special Secretion of Oxalic Acid from Root Tips,” Plant Physiology, Vol. 117, No. 3, 1998, pp. 745-751.
[133] J. F. Ma and S. Hiradate, “Form of Aluminium for Uptake and Translocation in Buckwheat (Fagopyrum esculentum Moench),” Planta, Vol. 211, No. 3, 2000, pp. 355-360. http://dx.doi.org/10.1007/s004250000292
[134] X. Li, J. Ma and H. Matsumoto, “Pattern of Aluminum Induced Secretion of Organic Acids Differs between Rye and Wheat,” Plant Physiology, Vol. 123, No. 4, 2000, pp. 1537-1544. http://dx.doi.org/10.1104/pp.123.4.1537
[135] Z. M. Yang, M. Sivaguru, W. J. Horts and H. Matsumoto, “Aluminum Tolerance Is Achieved by Exudation of Citric Acid from Roots of Soybean (Glycine max),” Plant Physiology, Vol. 110, No. 1, 2000, pp. 72-74.
[136] D. M. Pellet, L. A. Papernik and L. V. Kochian, “Multiple Aluminum-Resistance Mechanisms in Wheat (Roles of Root Apical Phosphate and Malate Exudation),” Plant Physiology, Vol. 112, No. 2, 1996, pp. 591-597.
[137] E. Delhaize, P. R. Ryan, P. J. Hocking and A. E. Richardson, “Effects of Altered Citrate Synthase and Isocitrate Dehydrogenase Expression on Internal Citrate Concentrations and Citrate Efflux from Tobacco (Nicotiana tabacum L.) Roots,” Plant and Soil, Vol. 248, No. 1-2, 2003, pp. 137-144.
http://dx.doi.org/10.1023/A:1022352914101
[138] J. Dengenhardt, P. B. Larsen, S. H. Howell and L. V. Kochian, “Aluminum Resistance in the Arabidopsis Mutantalr-104 Is Caused by an Aluminum-Induced Increase in Rhizosphere pH,” Plant Physiology, Vol. 117, No. 1, 1998, pp. 19-27. http://dx.doi.org/10.1104/pp.117.1.19
[139] M. E. LeNoble, D. G. Blevins, R. E. Sharp and B. G. Cumbie, “Prevention of Aluminium Toxicity with Supplemental Boron. I. Maintenance of Root Elongation and Cellular Structure,” Plant, Cell & Environment, Vol. 19, No. 10, 1996, pp. 1132-1142.
http://dx.doi.org/10.1111/j.1365-3040.1996.tb00428.x
[140] G. Feng, F. S. Zhang, X. Li, C. Tian, C. Tang and Z. Rengel, “Improved Tolerance of Maize Plants to Salt Stress by Arbuscular mycorrhiza Is Related to Higher Accumulation of Soluble Sugars in Roots,” Mycorrhiza, Vol. 12, No. 4, 2002, pp. 185-190.
http://dx.doi.org/10.1007/s00572-002-0170-0
[141] N. V. Hue, G. R. Craddock and F. Adams, “Effect of Organic Acids on Aluminum Toxicity in Subsoils,” Soil Science of American Journal, Vol. 50, No. 1, 1986, pp. 28-34.
http://dx.doi.org/10.2136/sssaj1986.03615995005000010006x
[142] M. Akeson and D. N. Munns, “Uptake of Aluminum into Root Cytoplasm; Predicted Rates for Important Solution Complexes,” Journal of Plant Nutrition, Vol. 13, No. 5, 1990, pp. 467-484.
http://dx.doi.org/10.1080/01904169009364093
[143] B. Shi and A. Haug, “Aluminum Uptake by Neuro-Blastomacells,” Journal of Neurochemistry, Vol. 55, No. 2, 1990, pp. 551-558.
http://dx.doi.org/10.1111/j.1471-4159.1990.tb04169.x
[144] J. M. de la Fuente, V. Ramírez-Rodríguez, J. L. CabreraPonce and L. Herrera-Estrella, “Aluminum Tolerance in Transgenic Plants by Alteration of Citrate Synthesis,” Science, Vol. 276, No. 5318, 2007, pp. 1566-1568.
http://dx.doi.org/10.1126/science.276.5318.1566
[145] H. Koyama, A. Kawamura, T. Kihara, T. Hara, E. Takita and D. Shibata, “Overexpression of Mitochondrial Citrate Synthase in Arabidopsis thaliana Improved Growth on a Phosphorus Limited Soil,” Plant and Cell Physiology, Vol. 41, No. 9, 2000, pp. 1030-1037.
http://dx.doi.org/10.1093/pcp/pcd029
[146] M. Tesfaye, S. Temple, D. Allan, C. Vanc and D. Samac, “Overexpression of Malate Dehydrogenase in Transgenic Alfalfa Enhances Organic Acid Synthesis and Confers Tolerance to Aluminu,” Plant Physiology, Vol. 127, No. 4, 2001, pp. 1836-1844.
http://dx.doi.org/10.1104/pp.010376
[147] O. A. Hoekenga, T. J. Vision, J. E. Shaff, A. J. Monforte, G. P. Lee, S. H. Howell and L. V. Kochian, “Identification and Characterization of Aluminum Tolerance Loci in Arabidopsis (Landsberg erecta × Columbia) by Quantitative Trait Locus Mapping. A Physiologically Simple But Genetically Complex Trait,” Plant Physiology, Vol. 132, No. 2, 2003, pp. 936-948.
http://dx.doi.org/10.1104/pp.103.023085
[148] P. R. Ryan, M. Skerrett, G. Findlay, E. Delhaize and S. Tyerman, “Aluminum Activates an Anion Channel in the Apical Cells of Wheat Roots,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 94, No. 12, 1997, pp. 6547-6552.
http://dx.doi.org/10.1073/pnas.94.12.6547
[149] W. H. Zhang, P. Ryan and S. Tyerman, “Malate-Permeable Channels and Cation Channels Activated by Aluminum in the Apical Cells of Wheat Roots,” Plant Physiology, Vol. 125, No. 3, 2001, pp. 1459-1472.
http://dx.doi.org/10.1104/pp.125.3.1459
[150] M. A. Pineros1, J. V. Magalhaes1, V. M. Carvalho Alves and L. V. Kochian, “The Physiology and Biophysics of an Aluminum Tolerance Mechanism Based on Root Citrate Exudation in Maize,” Plant Physiology, Vol. 129, No. 3, 2002, pp. 1194-1206.
[151] A. Kurkdjian and J. Guern, “Intracellular pH: Measurement and Importance in Cell Activity,” Annual Review of Plant Physiology and Plant Molecular Biology, Vol. 40, 1989, pp. 271-303.
http://dx.doi.org/10.1146/annurev.pp.40.060189.001415
[152] M. Kollmeier, P. Dietrich, C. S. Bauer, W. J. Horst and R. Hedrich, “Aluminum Activates a Citrate-Permeable Anion Channel in the Al-Sensitive Zone of the Maize Root Apex: A Comparison between an Al-Sensitive and an Al-Tolerant Cultivar,” Plant Physiology, Vol. 126, No. 1, 2001, pp. 397-410.
http://dx.doi.org/10.1104/pp.126.1.397
[153] K. Takeda, M. Kariuda and H. Itoi, “Blueing of Sepal Colour of Hydrangea macrophylla,” Photochemistry, Vol. 24, No. 10, 1985, pp. 2251-2254.
http://dx.doi.org/10.1016/S0031-9422(00)83019-8
[154] R. B. Martin, “The Chemistry of Aluminum as Related to Biology and Medicine,” Clinical Chemistry, Vol. 32, No. 1986, pp. 1797-1806.
[155] J. F. Ma, S. Hiradate and H. Matsumoto, “High Aluminum Resistance in Buckwheat: II. Oxalic Acid Detoxifies Aluminum Internally,” Plant Physiology, Vol. 117, No. 3, 1998, pp. 753-759.
http://dx.doi.org/10.1104/pp.117.3.753
[156] P. Wenzl, G. M. Patino, A. L. Chaves, J. E. Mayer and I. M. Rao, “The High Level of Aluminum Resistance in Signal Grass Is Not Associated with Known Mechanisms of Aluminum Detoxification in Root Apices,” Plant Physiology, Vol. 125, No. 3, 2001, pp. 1473-1484.
http://dx.doi.org/10.1104/pp.125.3.1473
[157] B. Ezaki, R. C. Gardner and H. Matsumoto, “Expression of Aluminum-Induced Genes in Transgenic Arabidopsis Plants Can Ameliorate Aluminum Stress and/or Oxidative Stress,” Plant Physiology, Vol. 122, No. 3, 2000, pp. 657-666. http://dx.doi.org/10.1104/pp.122.3.657
[158] C. W. MacDiarmid and R. C. Gardner, “Overexpression of the Saccharomyces cerevisiae Magnesium Transport System Confers Resistance to Aluminum Ion,” The Journal of Biological Chemistry, Vol. 273, No. 3, 1998, pp. 1727-1732. http://dx.doi.org/10.1074/jbc.273.3.1727
[159] C. D. Foy, “Soil Chemical Factors Limiting Plant Root Growth,” Advances in Soil Sciences: Limitations to Plant Root Growth, Vol. 19, 1992, pp. 97-149.
http://dx.doi.org/10.1007/978-1-4612-2894-3_5
[160] P. R. Ryan and L. V. Kochian, “Interaction between Aluminum Toxicity and Calcium Uptake at the Root Apex in Near-Isogenic Lines of Wheat (Triticumaestivum L.) Differing in Aluminum Tolerance,” Plant Physiology, Vol. 102, No. 3, 1993, pp. 975-982.
[161] P. S. Kidd, M. Llugany, C. Poschenrieder, B. Gunse and J. Barceló, “The Role of Root Exudates in Aluminium Resistance and Silicon-Induced Amelioration of Aluminium Toxicity in Tree Varieties of Maize (Zea mays L.),” Journal of Experimental Botany, Vol. 52, No. 359, 2001, pp. 1339-1352. http://dx.doi.org/10.1093/jexbot/52.359.1339
[162] U. Basu, D. Godbold and G. J. Taylor, “Aluminum Resistance in Triticum aestivum Associated with Enhanced Exudation of Malate,” Journal of Plant Physiology, Vol. 144, No, 6, 1994, pp. 747-753.
[163] C. A. Boulton and C. Ratledge, “Regulatory Studies on Citrate Synthase in Candida 107, an Oleaginous Yeast,” Microbiology, Vol. 121, No. 2, 1980, pp. 441-447.
http://dx.doi.org/10.1099/00221287-121-2-441
[164] A. A. Iglesias and C. S. Andreo, “NADP-Dependent Malate Dehydrogenase (Decarboxylating) from Sugar Cane Leaves,” European Journal of Biochemistry, Vol. 192, No. 3, 1990, pp. 729-733.
http://dx.doi.org/10.1111/j.1432-1033.1990.tb19283.x
[165] B. R. Howard, J. A. Endrizzi and S. J. Remington, “Crystal Structure of Escherichia coli Malate Synthase G Complexed with Magnesium and Glyoxylate at 2.0 Å Resolution: Mechanistic Implications,” Biochemistry, Vol. 39, No. 11, 2000, pp. 3156-3168.
http://dx.doi.org/10.1021/bi992519h
[166] Y. Satoh and Y. Nakamura, “Characteristics of the Reverse Reaction of NADP+-Isocitrate Dehydrogenase from Castor Bean Seeds,” Physiologia Plantarum, Vol. 62, No. 4, 1984, pp. 561-565.
http://dx.doi.org/10.1111/j.1399-3054.1984.tb02799.x
[167] S. A Doyle, P. T. Beernink and D. E. Koshland, “Structural Basis for a Change in Substrate Specificity: Crystal Structure of S113E Isocitrate Dehydrogenase in a Complex with Isopropylmalate, Mg2+, and NADP,” Biochemistry, Vol. 40, No. 14, 2001, pp. 4234-4241.
http://dx.doi.org/10.1021/bi002533q
[168] J. O. D. Coleman and J. M. Palmer, “The Oxidation of Malate by Isolated Plant Mitochondria,” European Journal of Biochemistry, Vol. 26, No. 4, 1972, pp. 499-509.
http://dx.doi.org/10.1111/j.1432-1033.1972.tb01792.x
[169] R. S. Bandurski, “Further Studies on the Enzymatic Synthesis of Oxalacetate from Phosphoenolpyruvate and Carbon Dioxide,” Journal of Biological Chemistry, Vol. 217, 1955, pp. 137-150.
[170] M. H. O’Leary, “Phosphoenolpyruvate Carboxylase: An Enzymologist’s View,” Annual Review of Plant Physiology, Vol. 33, 1982, pp. 297-315.
http://dx.doi.org/10.1146/annurev.pp.33.060182.001501
[171] A. Tovar-Mendez, R. Rodriguez-Sotres, D. M. LopezValentin and R. A. Munoz-Clares, “Re-Examination of the Roles of PEP and Mg2+ in the Reaction Catalysed by the Phosphorylated and Nonphosphorylated Forms of Phosphoenolpyruvate Carboxylase from Leaves of Zea mays. Effects of the Activators Glucose 6-Phosphate and Glycine,” Biochemical Journal, Vol. 332, 1998, pp. 633-642.
[172] F. E. Podestá and W. C. Plaxton, “Plant Cytosolic Pyruvate Kinase: A Kinetic Study,” Biochimica et Biophysica Acta, Vol. 1160, No. 2, 1992, pp. 213-220.
[173] I. R. Silva, T. J. Smyth, D. W. Israel, C. D. Raper and T. W. Rufty, “Magnesium Ameliorates Aluminum Rhizotoxicity in Soybean by Increasing Citric Acid Production and Exudation by Roots,” Plant and Cell Physiology, Vol. 42, No. 5, 2001, pp. 546-554.
http://dx.doi.org/10.1093/pcp/pce067
[174] J. L. Yang, J. F. You, Y. Y. Li, P. Wu and S. J. Zheng, “Magnesium Enhances Aluminum-Induced Citrate Secretion in Rice Bean Roots (Vigna umbellata) by Restoring Plasma Membrane H+-ATPase Activity,” Plant and Cell Physiology, Vol. 48, No. 1, 2007, pp. 66-73.
http://dx.doi.org/10.1093/pcp/pcl038
[175] I. R. Silva, T. J. Smyth, D. W. Israel, C. D. Raper and T. W. Rufty, “Magnesium Is More Efficient than Calcium in Alleviating Aluminum Rhizotoxicity in Soybean and Its Ameliorative Effect Is Not Explained by the Gouy-Chapman-Stern Model,” Plant and Cell Physiology, Vol. 42, No. 5, 2001, pp. 538-545.
http://dx.doi.org/10.1093/pcp/pce066
[176] I. R. Silva, T. J. Smyth, D. W. Israel and T. W. Rufty, “Altered Aluminum Inhibition of Soybean Root Elongation in the Presence of Magnesium,” Plant and Soil, Vol. 230, No. 2, 2001, pp. 223-230.
http://dx.doi.org/10.1023/A:1010384516517
[177] R. J. Brooker and C. W. Slayman, “Effects of Mg2+ Ions on the Plasma Membrane [H+]-ATPase of Neurosporacrassa. II. Kinetic Studies,” Journal of Biological Chemistry, Vol. 258, No. 14, 1983, pp. 8833-8838.
[178] M. S. Costa and L. de Meis, “Regulation of Plasma Membrane H+-ATPase from Corn Root by Mg2+ and pH,” Biochimicaet BiophysicaActa, Vol. 1279, No. 2, 1996, pp. 214-218.
[179] F. Marty, “Plant Vacuoles,” The Plant Cell, Vol. 11, No. 4, 1999, pp. 587-600.
[180] H. Matsumoto, “Inhibition of Proton Transport Activity of Microsomal Membrane Vesicles of Barley Roots by Aluminum,” Soil Science and Plant Nutrition, Vol. 34, No. 4, 1988, pp. 499-506.
http://dx.doi.org/10.1080/00380768.1988.10416466
[181] H. Matsumoto, Y. Yamamoto and M. Kasai, “Changes of Some Properties of the Plasma Membrane-Enriched Fraction of Barley Roots Related to Aluminum Stress: Membrane-Associated ATPase, Aluminum and Calcium,” Soil Science and Plant Nutrition, Vol. 38, No. 3, 1992, pp. 411-419.
http://dx.doi.org/10.1080/00380768.1992.10415073
[182] M. Sasaki, M. Kasai, Y. Yamamoto and H. Matsumoto, “Involvement of Plasma Membrane Potential in the Tolerance Mechanism of Plant Roots to Aluminum Toxicity,” Plant and Soil, Vol. 171, No. 1, 1995, pp. 119-124.
http://dx.doi.org/10.1007/BF000095

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.