Share This Article:

In Vitro Studies of NIPAAM-MAA-VP Copolymer-Coated Magnetic Nanoparticles for Controlled Anticancer Drug Release*

Abstract Full-Text HTML Download Download as PDF (Size:804KB) PP. 108-115
DOI: 10.4236/jeas.2013.34013    3,998 Downloads   6,799 Views   Citations


Thermosensetive poly(N-isopropylacrylamide)-based magnetic nanoparticles were synthesized by free radical polymerization of N-isopropylacrylamide (NIPPAMs), methacrylic acid (MAA), and vinyl pyrrolidone (VP) in the presence of methylene-bis-acrylamide as cross linking agent. The Fe3O4 magnetic nanoparticls were prepared by chemical precipitation of Fe salts in the ratio of 1:2 under alkaline and inert condition. Thermosensitive crosslinked P (NI-PAAM-MAA-VP) copolymers were characterized by FT-IR and H-NMR. The pH and thermosensitive copolymer was used for preparation of drug loaded magnetic nanoparticles, and doxorubicin (DOX) was used as a typical anticancer drug. The amount of the loaded drug and drug release amount were determined by UV measurements. Scanning electron microscopy (SEM) and lower critical solution temperature (LCST) were used to determine the particle surface morphology and the phase transition temperature of the nanoparticles respectively. The release behavior of DOX at pH = 7.4 and 37°C was studied. The result indicated that this thermosensetive magnetic nanoparticle has a high drug loading capacity and favorable linear release property for DOX without initial burst release. Thus this system is promising for the application in targeted smart anticancer drug delivery.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

S. Davaran, A. Akbarzadeh, K. Nejati-Koshki, S. Alimohammadi, M. Farajpour Ghamari, M. Mahmoudi Soghrati, A. Rezaei and A. Ahmad Khandaghi, "In Vitro Studies of NIPAAM-MAA-VP Copolymer-Coated Magnetic Nanoparticles for Controlled Anticancer Drug Release*," Journal of Encapsulation and Adsorption Sciences, Vol. 3 No. 4, 2013, pp. 108-115. doi: 10.4236/jeas.2013.34013.


[1] A. K. Gupta and M. Gupta, “Synthesis and Surface Engineering of Iron Oxide Nanoparticles for Biomedical Ap- plications,” Biomaterials, Vol. 26, No. 10, 2005, pp. 3995-4021.
[2] Y. Yong, Y. Bai, Y. Li, L. Lin, Y. Cui and C. Xia, “Preparation and Application of Polymer-Grafted Magnetic Nanoparticles for Lipase Immobilization,” Journal of Magnetism and Magnetic Materials, Vol. 320, No. 4, 2008, pp. 2350-2355.
[3] A. Ito, M. Shinkai, H. Honda and T. Kobayashi, “Medical Application of Functionalized Magnetic Nanoparticles,” Journal of Bioscience and Bioengineering, Vol. 100, No. 10, 2005, pp. 1-11.
[4] I. Bilecka, M. Kubli, E. Amstad and M. Niederberger, “Simultaneous Formation of Ferrite Nanocrystals and Deposition of Thin Films via a Microwave-Assisted Nonaqueous Sol-Gel Process,” Journal of Sol-Gel Science and Technology, Vol. 57, No. 3, 2011, pp. 313-322.
[5] M. Rahimi, M. Yousef, Y. Cheng, E. I. Meletis, R. C. Eberhart and K. Nguyen, “Formulation and Characterization of a Covalently Coated Magnetic Nanogel,” Journal of Nanoscience and Nanotechnology, Vol. 9, No. 10, 2009, p. 4128.
[6] S. Alimohammadi, R. Salehi, N. Amini and S. Davaran, “Synthesis and Physicochemical Characterization of Biodegradable PLGA-Based Magnetic Nanoparticles Containing Amoxicilin,” The Bulletin of the Korean Chemical Society, Vol. 33, No. 33, 2012, p. 3225.
[7] K. Tanaka, N. Kitamura, M. Morita, T. Inubushi and Y. Chujo, “Assembly System of Direct Modified Superparamagnetic Iron Oxide Nanoparticles for Target-Specific MRI Contrast Agents,” Bioorganic & Medicinal Chemistry Letters, Vol. 18, No. 9, 2008, pp. 5463-5465.
[8] S. S. Banerjee and D. H. Chen, “Cyclodextrin Conjugated Magnetic Colloidal Nanoparticles as a Nanocarrier for Targeted Anticancer Drug Delivery,” Nanotechnology, Vol. 19, No. 10, 2008, pp. 265-602.
[9] M. M. Yallapu, S. P. Foy, T. K. Jain and V. Labhasetwar, “PEG-Functionalized Magnetic Nanoparticles for Drug Delivery and Magnetic Resonance Imaging Applications,” Pharmaceutical Research, Vol. 27, No. 4, 2010, pp. 2283-2295.
[10] M. Rahimi, A. Wadajkar, K. Subramanian, M. Yousef, W. Cui, J. T. Hsieh and K. T. Nguyen, “In Vitro Evaluation of Novel Polymer-Coated Magnetic Nanoparticles for Controlled Drug Delivery,” Nanomedicine: Nanotechnology, Biology and Medicine, Vol. 6, No. 1, 2010, pp. 672-680.
[11] P. Tartaj, M. del Puerto Morales, S. Veintemillas-Verdaguer, T. González-Carreno and C. J. Serna, “The Preparation of Magnetic Nanoparticles for Applications in Biomedicine,” Journal of Physics D: Applied Physics, Vol. 36, No. 10, 2003, p. R182.
[12] S. Zhang, L. Zhang, B. He and Z. Wu, “Preparation and Characterization of Thermosensitive PNIPAA-Coated Iron Oxide Nanoparticles,” Nanotechnology, Vol. 19, No. 10, 2008, pp. 325-608.
[13] S. H. Hu, T. Y. Liu, D. M. Liu and, S. Y. Chen, “Nano-Ferrosponges for Controlled Drug Release,” Journal of Controlled Release, Vol. 121, No. 6, 2007, pp. 181-189.
[14] L. M. Geever, D. M. Devine, M. J. D. Nugent, J. E. Kennedy, J. G. Lyons and C. L. Higginbotham, “The Synthesis, Characterisation, Phase Behaviour and Swelling of Temperature Sensitive Physically Crosslinked Poly (1-vi- nyl-2-pyrrolidinone)/poly(N-isopropylacrylamide) Hydrogels,” European Polymer Journal, Vol. 42, No. 9, 2006, pp. 69-80.
[15] L. M. Geever, D. M. Devine, M. J. D. Nugent, J. E. Kennedy, J. G. Lyons, A. Hanley and C. L. Higginbotham, “Lower Critical Solution Temperature Control and Swelling Behaviour of Physically Crosslinked Thermosensitive Copolymers Based on< i> N-isopropylacrylamide,” European Polymer Journal, Vol. 42, No. 6, 2006, pp. 2540-2548.
[16] L. M. Geever, C. C. Cooney, J. G. Lyons, J. E. Kennedy, M. J. D. Nugent, S. Devery and C. L. Higginbotham, “Characterisation and Controlled Drug Release from Novel Drug-Loaded Hydrogels,” European Journal of Pharmaceutics and Biopharmaceutics, Vol. 69, No. 12, 2008, pp. 1147-1159.
[17] B. Yu, H. C. Tai, W. Xue, L. J. Lee and R. J. Lee, “Recep- tor-Targeted Nanocarriers for Therapeutic Delivery to Cancer,” Molecular Membrane Biology, Vol. 27, No. 10, 2010, pp. 286-298.
[18] M. K. Yu, Y. Y. Jeong, J. Park, S. Park, J. W. Kim, J. J. Min, K. Kim and S. Jon, “Drug-Loaded Superparamagnetic Iron Oxide Nanoparticles for Combined Cancer Imaging and Therapy in Vivo,” Angewandte Chemie International Edition, Vol. 47, 2008, pp. 5362-5365.
[19] S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst and R. N. Muller, “Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications,” Chemical Reviews, Vol. 108, No. 10, 2008, p. 2064.
[20] A. Akbarzadeh, D. Asgari, N. Zarghami, R. Mohammad and S. Davaran, “Preparation and in Vitro Evaluation of Doxorubicin-Loaded Fe3O4 Magnetic Nanoparticles Modified with Biocompatible Co-Polymers,” International Journal of Nanomedicine, Vol. 7, No. 1, 2012, pp. 511-526.
[21] A. Akbarzadeh, N. Zarghami, H. Mikaeili, D. Asgari, A. M. Goganian, H. K. Khiabani, M. Samiei and S. Davaran, “Synthesis, Characterization, and in Vitro Evaluation of Novel Polymer-Coated Magnetic Nanoparticles for Controlled Delivery of Doxorubicin,” Nanotechnology, Science and Applications, Vol. 5, No. 1, 2012, pp. 13-25.
[22] A. Akbarzadeh, M. Samiei and S. Davaran, “Magnetic Nanoparticles: Preparation, Physical Properties, and Applications in Biomedicine,” Nanoscale Research Letters, Vol. 7, No. 10, 2012, p. 144.
[23] A. Valizadeh, H. Mikaeili, M. Samiei, S. M. Farkhani, N. Zarghami, M. kouhi, A. Akbarzadeh and S. Davaran, “Quantum Dots: Synthesis, Bioapplications, and Toxicity,” Nanoscale Research Letters, Vol. 7, No. 10, 2012, p. 480.
[24] A. Akbarzadeh, R. Rezaei-Sadabady, S. Davaran, S. W. Joo, N. Zarghami, Y. Hanifehpour, M. Samiei, M. Kouhi and K. Nejati-Koshki, “Liposome: Classification, Preparation, and Applications,” Nanoscale Research Letters, Vol. 8, No. 8, 2013, p. 102.
[25] M. Pourhassan-Moghaddam, M. Rahmati-Yamchi, A. Akbarzadeh, H. Daraee, K. Nejati-Koshki, Y. Hanifehpour and S. W. Joo, “Protein Detection through Different Platforms of Immuno-Loop-Mediated Isothermal Amplification,” Nanoscale Research Letters, Vol. 8, No. 8, 2013, p. 485.
[26] M. Mollazade, K. Nejati-Koshki, A. Akbarzadeh, Y. Hanifehpour, N. Zarghami and S. W. Joo, “PAMAM Dendrimers Arugment Inhibitory Effect of Curcumin on Cancer Cell Proliferation: Possible Inhibition of Telomerase,” 2013.
[27] S. Ghasemali, A. Akbarzadeh, S. Alimirzalu, M. Rahmati Yamchi, A. Barkhordari, M. Tozihi, S. H. Kordi, N. Mohammadzadeh, S. FekriAval, F. N. Mahabady, M. Abbasi, Y. Hanifehpour, K. Nejati-Koshki, S. W. Joo, E. Tafsiri and N. Zarghami, “Study of Inhibitory Effect of β-Cyclo- dextrin-HelenalinComplex on HTERT Gene Expression in T47D Breast Cancer Cell Line by Real Time Quantitative PCR (q-PCR),” 2013.
[28] K. Nejati-Koshki, A. Akbarzadeh, M. Pourhasan-Moghadam and S. W. Joo, “Inhibition of Leptin and Leptin Receptor Gene Expression by Silibinin-Curcumin Combination,” 2013.
[29] R. Rezaei-Sadabady, N. Zarghami, A. Barzegar, A. Eidi, A. Akbarzadeh and M. Rezaei-Tavirani, “Studies of the Relationship between Structure and Antioxidant Activity in Interesting Systems, Including Tyrosol, Hydroxytyrosol Derivatives Indicated by Quantum Chemical Calculations,” Soft, Vol. 2, No. 2, 2013, pp. 13-18.
[30] Z. Ebrahimnezhad, N. Zarghami, M. Keyhani, S. Amirsaadat, A. Akbarzadeh, M. Rahmati, Z. M. Taheri and K. Nejati-Koshki, “Inhibition of hTERT Gene Expression by Silibinin-Loaded PLGA-PEG-Fe3O4 in T47D Breast Cancer Cell Line,” Bioimpacts, Vol. 3, No. 2, 2013, pp. 67-74.
[31] A. Akbarzadeh, M. Samiei, S. W. Joo, M. Anzaby, Y. Hanifehpour and H. T. Nasrabadi, “Davaran, Synthesis, Characterization and in Vitro Studies of Doxorubicin-Loaded Magnetic Nanoparticles Grafted to Smart Copolymers on A549 Lung Cancer Cell Line,” Journal of Nanobiotechnology, Vol. 10, No. 10, 2012, p. 46.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.