Terahertz Time-Domain Spectroscopy to Identify and Evaluate Anomer in Lactose

Abstract

Lactose powder consisting of α-D-lactose monohydrate and anhydrous β-D-lactose was nondestructively and quantitatively evaluated by transmission-type Terahertz time-domain spectroscopy (THz-TDS). An absorption with peak at 39.7 cm-1 (1.19 THz) was assigned to be derived from anhydrous β-D-lactose, in addition to the absorptions due to α-D-lactose monohydrate with peak at 17.1 cm-1 (0.53 THz) and 45.6 cm-1 (1.37 THz). After deconvolution of the spectra using Lorentzian, integrated intensities of the absorptions with peak at 39.7 cm-1 and 45.6 cm-1 were uniquely dependent on the weight composition ratio of the α-and β-lactose powder. As a result, the net molar-ratio of the α-and β-lactose in lactose powder could be precisely evaluated by the integrated intensity ratio. Further, anomer content in lactose powder extracted from lactose solution was evaluated and the refined and unrefined features were shown by the evaluation method.

Share and Cite:

S. Yamauchi, S. Hatakeyam, Y. Imai and M. Tonouchi, "Terahertz Time-Domain Spectroscopy to Identify and Evaluate Anomer in Lactose," American Journal of Analytical Chemistry, Vol. 4 No. 12, 2013, pp. 756-762. doi: 10.4236/ajac.2013.412092.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. G. Ganzle, G. Haase and P. Jelen, “Lactose: Crystallization, Hydrolysis and Value-Added Derivatives,” International Dairy Journal, Vol. 18, No. 7, 2008, pp. 685-695. http://dx.doi.org/10.1016/j.idairyj.2008.03.003
[2] C. S. Hudson, “Future Studies on the Forms of Milk-Sugar,” Journal of the American Chemical Society, Vol. 30, No. 11, 1908, pp. 1767-1783.
http://dx.doi.org/10.1021/ja01953a015
[3] C. A. Aguilar and G. R. Ziegler, “Physical and Microscopic Characterization of Dry Whole Milk with Altered Lactose Content. 2. Effect of Lactose Crystallization,” Journal of Dairy Science, Vol. 77, No. 5, 1994, pp. 1198-1204.
http://dx.doi.org/10.3168/jds.S0022-0302(94)77058-2
[4] P. Würsch, J. Rosset, B. Kollreutter and A. Klein, “Crystallization of β-Lactose under Elevated Storage Temperature in Spray-Dried Milk Powder,” Milchwissenschaft, Vol. 39, No. 10, 1984, pp. 579-582.
[5] K. Jouppila, J. Kansikas and Y. H. Roos, “Glass Transition, Water Plasticization, and Lactose Crystallization in Skim Milk Powder,” Journal of Dairy Science, Vol. 80, No. 12, 1997, pp. 3152-3160.
http://dx.doi.org/10.3168/jds.S0022-0302(97)76286-6
[6] E. Berlin, B. A. Anderson and M. J. Pallansch, “Water Vapor Sorption Properties of Various Dried Milks and Whey,” Journal of Dairy Science, Vol. 51, No. 9, 1968, pp. 1339-1344.
http://dx.doi.org/10.3168/jds.S0022-0302(68)87191-7
[7] N. Drapier-Beche, J. Fanni, M. Parmentier and M. Vilasi, “Evaluation of Lactose Crystalline Forms by Nondestructive Analysis,” Journal of Dairy Science, Vol. 80, No. 3, 1997, pp. 457-463.
http://dx.doi.org/10.3168/jds.S0022-0302(97)75957-5
[8] P. Darcy and G. Buckton, “The Influence of Heating: Drying on the Crystallisation of Amorphous Lactose after Structural Collapse,” International Journal of Pharmaceutics, Vol. 158, No. 2, 1997, pp. 157-164.
http://dx.doi.org/10.1016/S0378-5173(97)00245-7
[9] á. Gombás, P. Szabó-Révész, M. Kata, J. G. Regdon and I. Eros, “Quantitative Determination of Crystallinity of α-Lactose Monohydrate by DSC,” Journal of Thermal Analysis and Calorimetry, Vol. 68, No. 2, 2002, pp. 503-510. http://dx.doi.org/10.1023/A:1016039819247
[10] B. M. Murphya, S. W. Prescottb and I. Larson, “Measurement of Lactose Crystallinity Using Raman Spectroscopy,” Journal of Pharmaceutical and Biomedical Analysis, Vol. 38, No. 1, 2005, pp. 186-190.
http://dx.doi.org/10.1016/j.jpba.2004.12.013
[11] J. H. Kirk, S. E. Dann and C. G. Blatchford, “Lactose: A Definitive Guide to Polymorph Determination,” International Journal of Pharmaceutics, Vol. 334, No. 1-2, 2007, pp. 103-114.
http://dx.doi.org/10.1016/j.ijpharm.2006.10.026
[12] Md. K. Haque and Y. H. Roos, “Lactose: A Definitive Guide to Polymorph Determination,” Carbohydrate Research, Vol. 340, No. 2, 2005, pp. 293-301.
[13] M. Yamaguchi, F. Miyamaru, K. Yamamoto, M. Tani and M. Hangyo, “Terahertz Absorption Spectra of L-, D-, and DL-Alanine and Their Application to Determination of Enantiometric Composition,” Applied Physics Letters, Vol. 86, 2005, Article ID: 053903.
http://dx.doi.org/10.1063/1.1857080
[14] F. Miyamaru, M. Yamaguchi, M. Tani, M. Hangyo, K. Yamamoto and K. Tominaga, “THz-Time-Domain Spectroscopy of Amino Acids in Solid Phase,” Conference on Lasers and Electro-Optics, Baltimore, 6 June 2003.
[15] M. Walther, B. Fischer, M. Schall, H. Helm and P. U. Jepsen, “Far-Infrared Vibrational Spectra of All-Trans, 9-cis and 13-cis Retinal Measured by THz Time-Domain Spectroscopy,” Chemical Physics Letters, Vol. 332, No. 3-4, 2000, pp. 389-395.
http://dx.doi.org/10.1016/S0009-2614(00)01271-9
[16] P. C. Upadhya, Y. C. Shen, A. G. Davies and E. H. Linfield, “Far-Infrared Vibrational Modes of Polycrystalline Saccharides,” Vibrational Spectroscopy, Vol. 35, No. 1, 2004, pp. 139-143.
http://dx.doi.org/10.1016/j.vibspec.2003.12.010
[17] H. B. Liu and X. C. Zhang, “Dehydration Kinetics of D-Glucose Monohydrate Studied Using THz Time-Domain Spectroscopy,” Chemical Physics Letters, Vol. 429, No. 1-3, 2006, pp. 229-233.
http://dx.doi.org/10.1016/j.cplett.2006.07.100
[18] A. Roggenbuck, H. Schmitz, A. Deninger, I. C. Mayorga, J. Hemberger, R. Güsten and M. Grüninger, “Coherent Broadband Continuous-Wave Terahertz Spectroscopy on Solid-State Samples,” New Journal of Physics, Vol. 12, 2010, Article ID: 043017.
http://dx.doi.org/10.1088/1367-2630/12/4/043017
[19] H. M. Pickett, R. L. Poynter, E. A. Cohen and M. L. Delisky, J. C. Pearson and H. S. P. Müller, “Submillimeter Millimeter, and Microwave Spectral Line Catalog,” Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 60, No. 5, 1998, pp. 883-890.
http://dx.doi.org/10.1016/S0022-4073(98)00091-0
[20] S. Saito, T. M.Inerbaev, H. Mizuseki, N. Igarashi, R. Note and Y. Kawazoe, “First Principles Calculation of Terahertz Vibrational Modes of a Disaccharide Monohydrate Crystal of Lactose,” Japanese Journal of Applied Physics, Vol. 45, No. 43, 2006, pp. L1156-L1158.
http://dx.doi.org/10.1143/JJAP.45.L1156
[21] D. G. Allis, A. M. Fedor, T. M. Korter, J. E. Bjarnason and E. R. Brown, “Assignment of the Lowest-Lying THz Absorption Signatures in Biotin and Lactose Monohydrate by Solid-State Density Functional Theory,” Chemical Physics Letters, Vol. 440, No. 4-6, 2007, pp. 203-209.
http://dx.doi.org/10.1016/j.cplett.2007.04.032
[22] N. Drapier-Beche, J. Fanni and M. Parmentier, “Physical and Chemical Properties of Molecular Compounds of Lactose,” Journal of Dairy Science, Vol. 82, No. 12, 1999, pp. 2558-2563.
http://dx.doi.org/10.3168/jds.S0022-0302(99)75510-4
[23] T. A. Nickerson, “Lactose Crystallization in Ice Cream. IV. Factors Responsible for Reduced Incidence of Sandiness,” Journal of Dairy Science, Vol. 45, No. 3, 1962, pp. 354-359.
http://dx.doi.org/10.3168/jds.S0022-0302(62)89398-9
[24] P. Walstra, J. T. Wouters and T. J. Geurts, “Dairy Science and Technology,” 2nd Edition, CRC Press, 2005, p. 754.
http://dx.doi.org/10.1201/9781420028010.ax7

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.