Share This Article:

Thermal Stability and Decomposition Kinetics of Polysuccinimide

Abstract Full-Text HTML Download Download as PDF (Size:424KB) PP. 749-755
DOI: 10.4236/ajac.2013.412091    3,354 Downloads   4,854 Views   Citations


The thermal stability and decomposition kinetics of polysuccinimide (PSI) were investigated using analyzer DTG-60 under high purity nitrogen atmosphere at different heating rates (3, 6, 9, 12 K/min). The thermal decomposition mechanism of PSI was determined by Coats-Redfern method. The kinetic parameters such as activation energy (E), pre-exponential factor (A) and reaction order (n) were calculated by Flynn-Wall-Ozawa and Kissinger methods. The results show that the thermal decomposition of PSI under nitrogen atmosphere mainly occurs in the temperature range of 619.15-693.15 K, the reaction order (n) was , the activation energy (E) and pre-exponential factor (A) were obtained to be 106.585 kJ/mol and 4.644 × 109 min-1, the integral and differential forms of the thermal decomposition mechanism of PSI were found to be and , respectively. The results play an important role in understanding the thermodynamic properties of polysuccinimide.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

L. Zhang, M. Huang and C. Zhou, "Thermal Stability and Decomposition Kinetics of Polysuccinimide," American Journal of Analytical Chemistry, Vol. 4 No. 12, 2013, pp. 749-755. doi: 10.4236/ajac.2013.412091.


[1] A. W. Yang, G. P. Cao and M. H. Zhang, “Synthesis of Polysuccinimide and Determination of the Intrinsic Viscosity,” Polymer Materials Science & Engineering, Vol. 26, 2010, pp. 4-7.
[2] J. H. Jeong, H. S. Kang, S. R. Yang and J. D. Kim, “Polymer Micelle-Like Aggregates of Novel Amphiphilic Biodegradable Poly(Asparagine) Grafted with Poly(Caprolactone),” Polymer, Vol. 44, No. 3, 2003, pp. 583-591.
[3] A. Rotaru, M. Anca, G. Popa, P. Rotaru and E. Segal, “Non-Isothermal Kinetics of 2-Allyl-4-((4-(4-Methylbenzyloxy)Phenyl) Diazenyl) Phenol in Air Flow,” Journal of Thermal Analysis and Calorimetry, Vol. 97, No. 2, 2009, pp. 485-491.
[4] H. E. Kissinger, “Variation of Peak Temperature with Heating Rate in Different Rate in Differential Thermal Analysis,” Journal of Research of the National Bureau of Standards, Vol. 57, No. 4, 1956, pp. 217-221.
[5] H. E. Kissinger, “Reaction Kinetic in Differential Thermal Analysis,” Analytical Chemistry, Vol. 29, No. 11, 1957, pp. 1702-1706.
[6] E. S. Freeman and B. Carroll, “The Application of Thermoanalytical Technique to Reaction Kinetics,” Journal of Physical Chemistry, Vol. 3, 1958, pp. 394-397.
[7] H. L. Friedman, “Kinetics and Gaseous Products of Thermal Decomposition of Polymers,” Journal of Macromolecular Science: Part A—Chemistry, Vol. 1, No. 1, 1967, pp. 57-59.
[8] A. W. Coats and J. P. Redfern, “Kinetic Parameters from Thermogravimetric Data,” Nature, Vol. 201, 1964, pp. 68-69.
[9] C. R. Zhou, Q. H. Li and H. F. Wang, “Thermal Analysis for the Thermal Decomposition of Methylsulfonate Tin,” Journal of Chemical Engineering of Chinese Universities, Vol. 20, 2006, pp. 669-672.
[10] C. R. Zhou, X. H. Shi, H. F. Wang and D. G. Jiang, “Thermal Decomposition and the Non-Isothermal Decomposition Kinetics of DL-2-Naproxen,” Journal of Chemical Engineering of Chinese Universities, Vol. 25, 2011, pp. 442-446.
[11] L. G. Lu, Q. Zhang, X. N. Xu, X. L. Dong and D. W. Wang, “Thermal Degradation Kinetics of Novel Intumescent Flame Retardant Polypropylene,” China Plastics, Vol. 23, 2009, pp. 53-60.
[12] C. Y. Ou, C. H. Zhang, S. D. Li, L. Yang and J. J. Dong, “Thermal Degradation Kinetics of Chitosan-Cobalt Complex as Studied by Thermogravimetric Analysis,” Carbohydrate Polymers, Vol. 82, No. 4, 2010, pp. 1284-1289.
[13] C. D. Doyle, “Kinetic Analysis of Thermogravimetric Data,” Journal of Applied Polymer Science, Vol. 5, No. 15, 1961, pp. 285-292.
[14] T. Ozawa, “Kinetic Analysis of Derivative Curves in Thermal Analysis,” Journal of Thermal Analysis, Vol. 2, No. 3, 1970, pp. 301-310.
[15] F. X. Chen, C. R. Zhou and G. P. Li, “Study on Thermal Decomposition and the Non-Isothermal Decomposition Kinetics of Glyphosate,” Journal of Thermal Analysis and Calorimetry, Vol. 109, No. 3, 2012, pp. 1457-1462.
[16] Q. F. Wang, L. Wang, X. W. Zhang and Z. T. Mi, “Thermal Stability and Kinetic of Decomposition of Nitrated HTPB,” Journal of Hazardous Materials, Vol. 172, No. 2-3, 2009, pp. 1659-1664.
[17] C. D. Gamlin, N. K. Dutta, N. R. Choudhury, D. Kehoe and J. Matisons, “Evaluation of Kinetic Parameters of Thermal and Oxidative Decomposition of Base Oils by Conventional, Isothermal and Modulated TGA, and Pressure DSC,” Thermochimica Acta, Vol. 392-393, 2002, pp. 357-369.
[18] X. Y. Li, Y. Q. Wu, D. H. Gu and F. X. Gan, “Thermal Decomposition Kinetics of Nickel(II) and Cobalt(II) Azo Barbituric Acid Complexes,” Thermochimica Acta, Vol. 493, No. 1-2, 2009, pp. 85-89.
[19] Z. W. Zhou and Q. X. Wu, “Studies on Thermal Properties of Poly(Phenylene Sulfide Amide),” Journal of Applied Polymer Science, Vol. 66, No. 7, 1997, pp. 1227-1230.<1227::AID-APP2>3.0.CO;2-I

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.