Share This Article:

Validation of High-Density Airborne LiDAR-Based Feature Extraction Using Very High Resolution Optical Remote Sensing Data

Abstract Full-Text HTML Download Download as PDF (Size:1917KB) PP. 297-311
DOI: 10.4236/ars.2013.24033    4,464 Downloads   10,951 Views   Citations

ABSTRACT

This work uses the canopy height model (CHM) based workflow for individual tree crown delineation from LiDAR point cloud data in an urban environment and evaluates its accuracy by using very high-resolution PAN (spatial) and 8-band WorldView-2 imagery. LiDAR point cloud data were used to detect tree features by classifying point elevation values. The workflow includes resampling of LiDAR point cloud to generate a raster surface or digital terrain model, generation of hill-shade image and intensity image, extraction of digital surface model, generation of bare earth digital elevation model and extraction of tree features. Scene dependent extraction criteria were employed to improve the tree feature extraction. LiDAR-based refining/filtering techniques used for bare earth layer extraction were crucial for improving the subsequent tree feature extraction. The PAN-sharpened WV-2 image (with 0.5 m spatial resolution) used to assess the accuracy of LiDAR-based tree features provided an accuracy of 98%. Based on these inferences, we conclude that the LiDAR-based tree feature extraction is a potential application which can be used for understanding vegetation characterization in urban setup.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

S. Jawak, S. Panditrao and A. Luis, "Validation of High-Density Airborne LiDAR-Based Feature Extraction Using Very High Resolution Optical Remote Sensing Data," Advances in Remote Sensing, Vol. 2 No. 4, 2013, pp. 297-311. doi: 10.4236/ars.2013.24033.

References

[1] M. A. Lefsky, W. B. Cohen, G. G. Parker and D. J. Harding, “Lidar Remote Sensing for Ecosystem Studies,” BioScience, Vol. 52, No. 1, 2002, pp. 19-23.
http://dx.doi.org/10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2
[2] A. Wehr and U. Lohr, “Airborne Laser Scanning—An Introduction and Overview,” ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 54, No. 2-3, 1999, pp. 68-82.
http://dx.doi.org/10.1016/S0924-2716(99)00011-8
[3] D. L. A. Gaveau and R. A. Hill, “Quantifying Canopy Height Underestimation by Laser Pulse Penetration in Small-Footprint Airborne Laser Scanning Data,” Canadian Journal of Remote Sensing, Vol. 29, No. 5, 2003, pp. 650-657. http://dx.doi.org/10.5589/m03-023
[4] C. Hopkinson, L. Chasmer, C. Young-Pow and P. Treitz, “Assessing Forest Metrics with a Ground-Based Scanning Lidar,” Canadian Journal of Forest Research, Vol. 34, No. 3, 2004, pp. 573-583.
http://dx.doi.org/10.1139/x03-225
[5] C. Hopkinson, M. Sitar, L. Chasmer and P. Treitz, “Mapping Snowpack Depth Beneath Forest Canopies Using Airborne Lidar,” Photogrammetric Engineering & Remote Sensing, Vol. 70, No. 3, 2004, pp. 323-330.
[6] N. F. Glenn, D. R. Streutker, D. J. Chadwick, G. D. Thackray and S. J. Dorsch, “Analysis of LiDAR-Derived Topographic Information for Characterizing and Differentiating Landslide Morphology and Activity,” Geomorphology, Vol. 73, No. 1-2, 2006, pp. 131-148.
http://dx.doi.org/10.1016/j.geomorph.2005.07.006
[7] S.-J. Lee, Y.-C. Chan, D. Komatitsch, B.-S. Huang and J. Tromp, “Effects of Realistic Surface Topography on Seismic Ground Motion in the Yangminshan Region of Taiwan Based upon the Spectral-Element Method and LiDAR DTM,” Bulletin of the Seismological Society of America, Vol. 99, No. 2A, 2009, pp. 681-693.
http://dx.doi.org/10.1785/0120080264
[8] T. Brandtberg, T. A. Warner, R. E. Landenberger and J. B. McGraw, “Detection and Analysis of Individual Leaf-Off Tree Crowns in Small Footprint, High Sampling Density Lidar Data from the Eastern Deciduous Forest in North America,” Remote Sensing of Environment, Vol. 85, No. 3, 2003, pp. 290-303.
http://dx.doi.org/10.1016/S0034-4257(03)00008-7
[9] National Oceanic and Atmospheric Administration (NOAA) Coastal Services Center, “Lidar 101: An Introduction to Lidar Technology, Data, and Applications,” NOAA Coastal Services Center, Charleston, 2012.
[10] X. Liu, “Airborne Point Cloud for DEM Generation: Some Critical Issues,” Progress in Physical Geography, Vol. 32, No. 1, 2008, pp. 31-49.
http://dx.doi.org/10.1177/0309133308089496
[11] E. S. Anderson, J. A. Thompson and R. E. Austin, “LiDAR Density and Linear Interpolator Effects on Elevation Estimates,” International Journal of Remote Sensing, Vol. 26, No. 18, 2005, pp. 3889-3900.
http://dx.doi.org/10.1080/01431160500181671
[12] C. Childs, “Interpolation Surfaces in ArcGIS Spatial Analyst,” ArcUser, July-September 2004, pp. 32-35.
[13] T. Podobnikar, “Suitable DEM for Required Application,” Proceedings of the 4th International Symposium on Digital Earth, Tokyo, March 2005.
[14] N. A. Cressie, “Statistics for Spatial Data,” Wiley, New York, 1993.
[15] P. J. J. Desmet, “Effects of Interpolation Errors on the Analysis of DEMs,” Earth Surface Processes and Landforms, Vol. 22, No. 6, 1997, pp. 563-580.
http://dx.doi.org/10.1002/(SICI)1096-9837(199706)22:6<563::AID-ESP713>3.0.CO;2-3
[16] Q. Chen, D. Baldocchi, P. Gong and M. Kelly, “Isolating Individual Trees in a Savanna Woodland Using Small Footprint Lidar Data,” Photogrammetric Engineering & Remote Sensing, Vol. 72, No. 8, 2006, pp. 923-932.
[17] Q. Chen, P. Gong, D. Baldocchi and Y. Q. Tian, “Estimating Basal Area and Stem Volume for Individual Trees from Lidar Data,” Photogrammetric Engineering & Remote Sensing, Vol. 73, No. 12, 2007, pp. 1355-1365.
[18] B. Koch, U. Heyder and H. Weinacker, “Detection of Individual Tree Crowns in Airborne Lidar Data,” Photogrammetric Engineering & Remote Sensing, Vol. 72, No. 4, 2006, pp. 357-363.
[19] I. Korpela, B. Dahlin, H. Schäfer, E. Bruun, F. Haapaniemi, J. Honkasalo, S. Ilvesniemi, V. Kuutti, M. Linkosalmi, J. Mustonen, M. Salo, O. Suomi and H. Virtanen, “Single-Tree Forest Inventory Using Lidar and Aerial Images for 3D Treetop Positioning, Species Recognition, Height and Crown Width Estimation,” International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences (IAPRS), Vol. 36, Pt. 3, 2007, pp. 227-233.
[20] X. Yu, J. Hyyppä, M. Vastaranta, M. Holopainen and R. Viitala, “Predicting Individual Tree Attributes from Airborne Laser Point Clouds Based on the Random Forests Technique,” ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 66, No. 1, 2011, pp. 28-37.
http://dx.doi.org/10.1016/j.isprsjprs.2010.08.003
[21] S. Lang, D. Tiede, B. Maier and T. Blaschke, “3D Forest Structure Analysis from Optical and LIDAR Data,” Revista Ambiência, Guarapuava, v.2 Edição Especial, Vol. 1, No. 1, 2006, pp. 95-110.
[22] S. C. Popescu, R. H. Wynne and R. F. Nelson, “Estimating Plot Level Tree Heights with Lidar: Local Filtering with a Canopy Height Based Variable Window Size,” Computers and Electronics in Agriculture, Vol. 37, No. 1-3, 2002, pp. 71-95.
http://dx.doi.org/10.1016/S0168-1699(02)00121-7
[23] K. Lim, P. Treitz, M. Wulder, B. St-Ongec and M. Flood, “LiDAR Remote Sensing of Forest Structure,” Progress in Physical Geography, Vol. 27, No. 1, 2003, pp. 88-106.
http://dx.doi.org/10.1191/0309133303pp360ra
[24] S. C. Popescu, R. H. Wynne and R. F. Nelson, “Measuring Individual Tree Crown Diameter with Lidar and Assessing Its Influence on Estimating Forest Volume and Biomass,” Canadian Journal of Remote Sensing, Vol. 29, No. 5, 2003, pp. 564-577.
http://dx.doi.org/10.5589/m03-027
[25] G. Patenaude, R. A. Hill, R. Milne, D. L. A. Gaveau, B. B. J. Briggs and T. P. Dawson, “Quantifying Forest above Ground Carbon Content Using LiDAR Remote Sensing,” Remote Sensing of Environment, Vol. 93, No. 3, 2004, pp. 368-380. http://dx.doi.org/10.1016/j.rse.2004.07.016
[26] S. C. Popescu and R. H. Wynne, “Seeing the Trees in the Forest: Using Lidar and Multispectral Data Fusion with Local Filtering and Variable Window Size for Estimating Tree Height,” Photogrammetric Engineering & Remote Sensing, Vol. 70, No. 5, 2004, pp. 589-604.
[27] D. Riaño, E. Chuvieco, S. Condés, J. González-Matesanz and S. L. Ustin, “Generation of Crown Bulk Density for Pinus sylvestrisL. from Lidar,” Remote Sensing of Environment, Vol. 92, No. 3, 2004, pp. 345-352.
http://dx.doi.org/10.1016/j.rse.2003.12.014
[28] J. C. Suárez, C. Ontiveros, S. Smith and S. Snape, “Use of Airborne LiDAR and Aerial Photography in the Estimation of Individual Tree Heights in Forestry,” Computers & Geosciences, Vol. 31, No. 2, 2005, pp. 253-262.
http://dx.doi.org/10.1016/j.cageo.2004.09.015
[29] S. C. Popescu, “Estimating Biomass of Individual Pine Trees Using Airborne Lidar,” Biomass and Bioenergy, Vol. 31, No. 9, 2007, pp. 646-655.
http://dx.doi.org/10.1016/j.biombioe.2007.06.022
[30] S. D. Roberts, et al., “Estimating Individual Tree Leaf Area in Loblolly Pine Plantations Using LiDAR-Derived Measurements of Height and Crown Dimensions,” Forest Ecology and Management, Vol. 213, No. 1-3, 2005, pp. 54-70. http://dx.doi.org/10.1016/j.foreco.2005.03.025
[31] M. Heurich, “Automatic Recognition and Measurement of Single Trees Based on Data from Airborne Laser Scanning over the Richly Structured Natural Forests of the Bavarian Forest National Park,” Forest Ecology and Management, Vol. 255, No. 7, 2008, pp. 2416-2433.
http://dx.doi.org/10.1016/j.foreco.2008.01.022
[32] D. A. Zimble, D. L. Evans, G. C. Calrson and R. C. Parker, “Characterizing Vertical Forest Structure Using Small-Footprint Airborne LiDAR,” Remote Sensing of Environment, Vol. 87, No. 2-3, 2003, pp. 171-182.
http://dx.doi.org/10.1016/S0034-4257(03)00139-1
[33] M. Z. A. Rahman and B. Gorte, “Tree Filtering for High Density Airborne LiDAR Data,” In: R. Hill, J. Rosette and J. Suarez (Eds.), Proceedings of the Silvilaser 2008: 8th International Conference on LiDAR Applications in Forest Assessment and Inventory, Heriot-Watt University, Edinburgh, 2008, pp. 544-553.
[34] M. Z. A. Rahman and B. G. H. Gorte, “Tree Crown Delineation from High-Resolution Airborne LiDAR Based on Densities of High Points,” Proceedings of ISPRS Workshop Laserscanning 2009, Paris, 1-2 September 2009, pp. 123-128.
http://www.isprs.org/proceedings/XXXVIII/3-W8/papers/p51.pdf
[35] M. Z. A. Rahman and B. G. H. Gorte, “A New Method for Individual Tree Delineation and Undergrowth Removal from High Resolution Airborne LiDAR,” Proceedings of ISPRS Workshop Laserscanning 2009, Paris, 1-2 September 2009, pp. 283-288.
http://www.isprs.org/proceedings/XXXVIII/3-W8/papers/p52.pdf
[36] J. Reitberger, M. Heurich, P. Krzystek and U. Stilla, “Single Tree Detection in Forest Areas with High-Density LiDAR Data,” International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 36, No. 3, 2007, pp. 139-144.
[37] D. Tiede, G. Hochleitner and T. Blaschke, “A Full GISBased Workflow for Tree Identification and Tree Crown Delineation Using Laser Scanning,” In: U. Stilla, F. Rottensteiner and S. Hinz, Eds., Proceedings of CMRT 05, International Archives of Photogrammetry and Remote Sensing, XXXVI(Part 3/W24), Vienna, 29-30 August 2005, pp.9-14.
[38] M. J. Falkowski, A. M. S. Smith, A. T. Hudak, P. E. Gessler, L. A. Vierling and N. L. Crookston, “Automated Estimation of Individual Conifer Tree Height and Crown Diameter via Two-Dimensional Spatial Wavelet Analysis of Lidar Data,” Canadian Journal of Remote Sensing, Vol. 32, No. 2, 2006, pp. 153-161.
http://dx.doi.org/10.5589/m06-005
[39] Q. Guo, M. Kelly, P. Gong and D. Liu, “An Object-Based Classification Approach in Mapping Tree Mortality Using High Spatial Resolution Imagery,” GIScience & Remote Sensing, Vol. 44, No. 1, 2007, pp. 24-47.
http://dx.doi.org/10.2747/1548-1603.44.1.24
[40] F. Morsdorf, E. Meier, B. K?tz, K. I. Itten, M. Dobbertin and B. Allgowe, “LIDAR-Based Geometric Reconstruction of Boreal Type Forest Stands at Single Tree Level for Forest and Wildland Fire Management,” Remote Sensing of Environment, Vol. 92, No. 3, 2004, pp. 353-362.
http://dx.doi.org/10.1016/j.rse.2004.05.013
[41] H. Lee, K. C. Slatton, B. E. Roth and W. P. Cropper Jr., “Adaptive Clustering of Airborne LiDAR Data to Segment Individual Tree Crowns in Managed Pine Forests,” International Journal of Remote Sensing, Vol. 31, No. 1, 2010, pp. 117-139.
http://dx.doi.org/10.1080/01431160902882561
[42] D. J. Nowak, R. E. Hoehn III, D. E. Crane, J. C. Stevens and J. T. Walton, “Assessing Urban Forest Effects and values, San Francisco’s Urban Forest,” Resource Bulletin NRS-8., U.S. Department of Agriculture, Forest Service, Northern Research Station, Newtown Square, 2007, p. 22
[43] P. Teillet, M. Fedosejevs, D. Gauthier, M. A. D’Iorio, B. Rivard and P. Budkewitsch, “Initial Examination of Radar Imagery of Optical Radiometric Calibration Sites,” SPIE Proceedings, Vol. 2583, 1995, pp. 154-165.
http://dx.doi.org/10.1117/12.228560
[44] P. S. Chavez, “Image-Based Atmospheric CorrectionsRevisited and Improved,” Photogrammetric Engineering and Remote Sensing, Vol. 62, No. 9, 1996, pp.1025-1036.
[45] C. Song, C. E. Woodcock, K. C. Seto, M. P. Lenney and S. A. Macomber, “Classification and Change Detection Using Landsat TM Data: When and How to Correct Atmospheric Effects,” Remote Sensing of Environment, Vol. 75, No. 2, 2001, pp. 230-244.
http://dx.doi.org/10.1016/S0034-4257(00)00169-3
[46] S. D. Jawak and A. J. Luis, “Improved Land Cover Mapping Using High Resolution Multiangle 8-Band WorldView-2 Satellite Remote Sensing Data,” Journal of Applied Remote Sensing, Vol. 7, No. 1, 2013, Article ID: 073573.
http://dx.doi.org/10.1117/1.JRS.7.073573
[47] H. W. Bakker, W. F. Feringa, et al., “Principles of Remote Sensing,” The International Institute for GeoInformation Science and Earth Observation (ITC), Enschede, 2009.
[48] T. Updike and C. Comp, “Radiometric Use of Worldview-2 Imagery,” Technical Note, Digitalglobe?, Colorado [online], 2013.
www.digitalglobe.com/downloads/Radiometric_Use_of_WorldView-2_Imagery.pdf
[49] S. D. Jawak and A. J. Luis, “A Comprehensive Evaluation of PAN-Sharpening Algorithms Coupled with Resampling Methods for Image Synthesis of very High Resolution Remotely Sensed Satellite Data,” Advances in Remote Sensing, Vol. 2, No. 4, 2013, Article ID: 2630049.
[50] S. D. Jawak and A. J. Luis, “Applications of Worldview2 Satellite Data for Extraction of Polar Spatial Information and DEM of Larsemann Hills, East Antarctica,” FSNC 2011, Vol. 3, No. 1, 2011, pp. 148-151.
[51] S. D. Jawak and A. J. Luis, “High Resolution 8-Band WorldView-2 Satellite Remote Sensing Data for Polar Geospatial Information Mining and Thematic Elevation Mapping of Larsemann Hills, East Antarctica,” 11th ISAES2011, Edinburgh, 10-16 July 2011.
[52] S. D. Jawak and J. Mathew, “Semi-Automatic Extraction of Water Bodies and Roads from High Resolution QuickBird Satellite Data,” Proceedings of Geospatial World Forum 2011, Vol. PN-263, No. 1, 18-21 January 2011, pp. 247-257.
[53] S. D. Jawak, P. S. Khopkar and A. J. Luis, “Spectral Index Ratio-Based Quantitative Analysis of WorldView-2 Pansharpened Data,” National Seminar on Earth Observation & Geo-information Sciences for Environment and Sustainable Development (EGESD), University of Mumbai, Mumbai, 7-9 February 2013.
[54] S. D. Jawak and A. J. Luis, “WorldView-2 Satellite Remote Sensing Data for Polar Geospatial Information Mining of Larsemann Hills, East Antarctica,” Proceedings of 11th Pacific (Pan) Ocean Remote Sensing Conference (PORSEC), Kochi, 5-9 November 2012, Article ID: PORSEC2012-24-00006.
[55] S. D. Jawak and A. J. Luis, “Hyperspatial WorldView-2 Satellite Remote Sensing Data for Polar Geospatial Information Mining of Larsemann Hills, East Antarctica,” XXXII SCAR and Open Science Conference (OSC), Portland, 13-25 July 2012.
[56] S. D. Jawak, P. S. Khopkar and T. M. Godbole, “Spectral Quality Analysis of Pansharpened Worldview-2 Images using Normalized Difference Vegetation/Water (NDVI/ND WI) Index,” India Geospatial Forum, PN-32, Gurgaon, 7-9 February 2012.
[57] S. D. Jawak and A. J. Luis, “A Spectral Index RatioBased Antarctic Land-Cover Mapping Using Hyperspatial 8-Band WorldView-2 Imagery,” Polar Science, Vol. 7, No. 1, 2013, pp. 18-38.
http://dx.doi.org/10.1016/j.polar.2012.12.002
[58] C. Padwick, M. Deskevich, F. Pacifici and S. Smallwood, “WorldView 2 Pan-Sharpening,” ASPRS 2010, Annual Conference, San Diego, 2010.
[59] J.-Y. Rau, N.-Y. Chen and L.-C. Chen, “True Orthophoto Generation of Built-Up Areas Using Multi-View Images,” Photogrammetric Engineering & Remote Sensing, Vol. 68, No. 6, 2002, pp. 581-588.
[60] P. T. Giles, “Remote Sensing and Cast Shadows in Mountainous Terrain,” Photogrammetric Engineering & Remote Sensing, Vol. 67, No. 7, 2001, pp. 833-839.
[61] P. Gurram, S. Hu and A. Chan, “Uniform Grid Upsampling of 3D Lidar Point Cloud Data,” Proceedings of the SPIE, Vol. 8650, 2013, Article ID: 86500B.
[62] Q. Guo, W. Li, H. Yu and O. Alvarez, “Effects of Topographic Variability and Lidar Sampling Density on Several DEM Interpolation Methods,” Photogrammetric Engineering & Remote Sensing, Vol. 76, No. 6, 2010, pp. 701-712. http://dx.doi.org/10.14358/PERS.76.6.701
[63] T. L. Webster and G. Dias, “An Automated GIS Procedure for Comparing GPS and Proximal LIDAR Elevations,” Computers & Geosciences, Vol. 32, No. 6, 2006, pp. 713-726.
http://dx.doi.org/10.1016/j.cageo.2005.08.009

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.