Share This Article:

Crystal Structure Study on Non-Coplanarly Organized Accumulating Aromatic Rings Molecules: Spatial Organization of C,C,N-Triaryl Substituted Imines

Abstract Full-Text HTML XML Download Download as PDF (Size:1584KB) PP. 139-147
DOI: 10.4236/csta.2013.24019    3,951 Downloads   6,411 Views   Citations

ABSTRACT

The X-ray crystal structures of C,C,N-triaryl-substituted imine compounds, which have methoxy or hydroxy group adjacent to the imino moiety, are reported and discussed in comparison with those of the precursor ketone compounds, 1-(4-chlorobenzoyl)-2,7-dimethoxynaphthalene and 1-(4-chlorobenzoyl)-2-hydroxy-7-methoxynaphthalene. In crystals, three aromatic rings in a molecule of the methyl ether-retained imine compound are positioned almost perpendicularly to each other by giving non-coplanar spatial organization of the single molecular structure [dihedral angles: 85.32(18)° for C-linked phenyl ring and naphthalene ring; 79.27(17)° for N-linked phenyl ring and naphthalene ring; 84.78(17)° for C-linked phenyl ring and N-linked phenyl ring]. Spatial organization of the analogous methyl ether-cleaved imine compound has essentially same topology [dihedral angles 80.39(6)° for the C-linked phenyl ring and naphthalene ring; 82.35(6)° for the N-linked phenyl ring and naphthalene ring; 87.09(7)° for C- and N-linked phenyl rings]. These structural features of triarylimines apparently differ from those of the precursor ketones. Two aromatic rings in the methyl ether-cleaved ketone compound make smaller dihedral angle [58.10(6)°] by intramolecular hydrogen bond between ketonic carbonyl group and hydroxy group [2.5573(16) A] than that of the methyl ether-retained ketone [72.06(7)°]. In molecular packing, the methyl ether-retained imine forms tubular molecular alignments composed of RS dimeric molecular pairs, whereas the methyl ether-retained ketone affords consecutively stacks of one configurated molecules.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

A. Okamoto, A. Nagasawa,  . Siqingaowa and N. Yonezawa, "Crystal Structure Study on Non-Coplanarly Organized Accumulating Aromatic Rings Molecules: Spatial Organization of C,C,N-Triaryl Substituted Imines," Crystal Structure Theory and Applications, Vol. 2 No. 4, 2013, pp. 139-147. doi: 10.4236/csta.2013.24019.

References

[1] A. J. Neel, J. P. Hehn, P. F. Tripet and F. D. Toste, “Asymmetric Cross-Dehydrogenative Coupling Enabled by the Design and Application of Chiral Triazole-Containing Phosphoric Acids,” Journal of American Chemical Society, Vol. 135, No. 38, 2013, pp. 14044-14047.
http://dx.doi.org/10.1021/ja407410b
[2] R. Sun, C. Xue, X. Ma, M. Gao, H. Tian and Q. Li, “Light-Driven Linear Helical Supramolecular Polymer Formed by Molecular-Recognition-Directed Self-Assembly of Bis(p-sulfonatocalix[4]arene) and Pseudorotaxane,” Journal of American Chemical Society, Vol. 135, No. 16, 2013, pp. 5990-5993.
http://dx.doi.org/10.1021/ja4016952
[3] B. Jose, S. Matsushita and K. Akagi, “Lyotropic Chiral Nematic Liquid Crystalline Aliphatic Conjugated Polymers Based on Disubstituted Polyacetylene Derivatives That Exhibit High Dissymmetry Factors in Circularly Polarized Luminescence,” Journal of American Chemical Society, Vol. 134, No. 48, 2012, pp. 19795-19807.
http://dx.doi.org/10.1021/ja3086565
[4] Z. Furen, S. Haibin and Z. Guofu, “Synthesis and Catalytic Activity of Group 5 Metal Amides with Chiral Biaryldiamine-Based Ligands,” Dalton Transactions, Vol. 40, No. 7, 2011, pp. 1547-1566.
http://dx.doi.org/10.1039/c0dt01229g
[5] C. Chan, N.-W. Tseng, J. Ram, J. Liu, R. Kwok and B. Tang, “Construction of Functional Macromolecules with Well-Defined Structures by Indium-Catalyzed Three-Component Polycoupling of Alkynes, Aldehydes, and Amines,” Macromolecules, Vol. 46, No. 9, 2013, pp. 3246-3256. http://dx.doi.org/10.1021/ma4005346
[6] O. Lucchi, “High Symmetry Chiral Auxiliaries Containing Heteroatoms,” Pure and Applied Chemistry, Vol. 68, No. 4, 1996, pp. 945-950.
http://dx.doi.org/10.1351/pac199668040945
[7] K. Maruoka, “Asymmetric Phase Transfer Catalysis,” Wiley-VCH, Weinheim, 2008.
http://dx.doi.org/10.1002/9783527622627
[8] M. T. Scerba, C. M. Leavitt, M. E. Diener, A. F. DeBlase and T. Lectka, “NH+-F Hydrogen Bonding in a Fluorinated ‘Proton Sponge’ Derivative: Integration of Solution, Solid-State, Gas-Phase, and Computational Studies,” Journal of Organic Chemistry, Vol. 76, No. 19, 2011, pp. 7975-7984. http://dx.doi.org/10.1021/jo2015328
[9] S. Shinamura, E. Miyazaki and K. Takiyama, “Synthesis, Properties, Crystal Structures, and Semiconductor Characteristics of Naphtho[1,2-b:5,6-b’]dithiophene and -Diselenophene Derivatives,” Journal of Organic Chemistry, Vol. 75, No. 4, 2010, pp. 1228-1234.
http://dx.doi.org/10.1021/jo902545a
[10] Z. Y. Wang and A. L. Guen, “Synthesis and Properties of Poly(arylene ether)s Containing 1,8-Dibenzoylnaphthalene Units,” Macromolecules, Vol. 28, No. 10, 1995, pp. 3728-3732. http://dx.doi.org/10.1021/ma00114a029
[11] Y. L. Jiang, X. Gao, G. Guannan, A. Patel and A. Javer, “Selective Recognition of Uracil and Its Derivatives Using a DNA Repair Enzyme Structual Mimic,” Journal of Organic Chemistry, Vol. 75, No. 2, 2010, pp. 324-333.
http://dx.doi.org/10.1021/jo901862x
[12] X. Mei, R. M. Martin and C. Wolf, “Synthesis of Sterically Crowded Atropisomeric 1,8-Diacridylnaphthalene for Dual-Mode Enantioselective Fluorosensing,” Journal of Organic Chemistry, Vol.71, No.7, 2006, pp. 2854-2861. http://dx.doi.org/10.1021/jo0600353
[13] S. Cohen, M. Thirumalaikumar, S. Pogodin and I. Agranat, “Peri Interactions in Naphthalene Diketones: A Preference for (Z,Z) Conformations,” Structure Chemistry, Vol. 154, No. 4, 2004, pp. 339-346.
http://dx.doi.org/10.1023/B:STUC.0000026750.39809.07
[14] L.-H. Jing, D.-B. Qin, L. He, S.-J. Gu, H.-X. Zhang and G. Lei, “Dimethyl Naphthalene-1,8-dicarboxylate,” Acta Crystallographica Section E, Vol. 61, 2005, pp. o3595-o3596. http://dx.doi.org/10.1107/S160053680503148X
[15] A. Okamoto, S. Watanabe, K. Nakaema and N. Yonezawa, “Crystal Structure and Solution Structural Dynamic Feature of 1,8-Dibenzoyl-2,7-dimethoxynaphthalene,” Crystal Structure Theory and Applications, Vol. 1, No. 3, 2012, pp. 121-127.
http://dx.doi.org/10.4236/csta.2012.13022
[16] P. H. Gore and K. Henrick, “1,8-Dibenzoyl-2,7-dimethylnaphthalene,” Acta Crystallographica Section B, Vol. B36, 1980, pp. 2462-2465.
http://dx.doi.org/10.1107/S0567740880009077
[17] A. Okamoto and N. Yonezawa, “Reversible ArSE Aroylation of Naphthalene Derivatives,” Chemistry Letters, Vol. 38, No. 9, 2009, pp. 914-915.
http://dx.doi.org/10.1246/cl.2009.914
[18] A. Okamoto, R. Mitsui, H. Oike and N. Yonezawa, “Lewis Acid-Mediated ArSE Aroylation of Naphthalene Derivative: Distinct Second Aroylation Behavior of Naphthyl Ketone,” Chemistry Letters, Vol. 40, No. 11, 2011, pp. 1283-1284. http://dx.doi.org/10.1246/cl.2011.1283
[19] A. Okamoto, A. Nagasawa and N. Yonezawa, “Preparation and Structure of C,C,N-Triaryl Substituted Imine: TiCl4-DABCO-Mediated Imination of 1-Aroyl-2,7-dimethoxynaphthalene and Spatial Organization of the Produced Imine Molecule in Crystal,” 2013, in press.
[20] K. Sasagawa, R. Takeuchi, T. Kusakabe, N. Yonezawa and A. Okamoto, “{2,7-Dimethoxy-8-[4-(propan-2-yloxy) benzoyl]naphthalen-1-yl}[4-(propan-2-yloxy)phenyl]methanone,” Acta Crystallographica Section E, Vol. 69, 2013, pp. o444-445.
http://dx.doi.org/10.1107/S1600536813004959
[21] S. Mouri, D. Hijikata, K. Isozaki, N. Yonezawa and A. Okamoto, “[2,7-Diethoxy-8-(4-fluorobenzoyl)naphthalene-1-yl](4-fluorophenyl)methanone,” Acta Crystallographica Section E, Vol. 69, 2013, p. o637.
http://dx.doi.org/10.1107/S1600536813008295
[22] S. Yoshiwaka, D. Hijikata, K. Sasagawa, N. Yonezawa and A. Okamoto, “[8-(4-Phenoxybenzoyl)-2,7-bis(propan2-yloxy)naphthalen-1-yl](4-phenoxyphenyl)methanone,” Acta Crystallographica Section E, Vol. 69, 2013, p. o242.
http://dx.doi.org/10.1107/S1600536813000913
[23] A. Okamoto, A. Nagasawa and N. Yonezawa, “Preparation and Structure of C,C,N-Triaryl Substituted Imines: TiCl4-1,4-Diazabicyclo[2.2.2]octane-mediated Imination of 1-Aroyl-2,7-dimethoxynaphthalene and Spatial Organization of the Produced Imine Molecule in Crystal,” European Chemical Bulletin, Vol. 3, 2014, pp. 13-17.
[24] Rigaku, “PROCESS-AUTO,” Rigaku Corporation, Tokyo, 1998.
[25] Rigaku/MSC, “CrystalStructure,” Rigaku/MSC, The Woodlands, 2004.
[26] M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori and R. Spagna, “SIR2004: An Improved Tool for Crystal Structure Determination and Refinement,” Journal of Applied Crystallography., Vol. 38, 2005, pp. 381-388.
http://dx.doi.org/10.1107/S002188980403225X
[27] G. M. Sheldrick, “A Short History of SHELX,” Acta Crystallographica Section A, Vol. A64, 2008, pp. 112-122.
http://dx.doi.org/10.1107/S0108767307043930
[28] R. Mitsui, K. Nakaema, K. Noguchi, A. Okamoto and N. Yonezawa, “1-(4-Chlorobenzoyl)-2,7-dimethoxynaphthalene,” Acta Crystallographica Section E, Vol. E64, 2008, p. o1278. http://dx.doi.org/10.1107/S1600536808017297
[29] R. Mitsui, K. Nakaema, K. Noguchi and N. Yonezawa, “(4-Chlorophenyl)(2-hydroxy-7-methoxynaphthalen-1-yl)methanone,” Acta Crystallographica Section E, Vol. E64, 2008, p. o2497.
http://dx.doi.org/10.1107/S1600536808039603
[30] A. Nagasawa, R. Mitsui, Y. Kato, A. Okamoto and N. Yonezawa, “1-[(4-Chlorophenyl)(phenylimino)methyl]-7-methoxy-2-naphthol-1,4-diazabicyclo[2.2.2]octane (2/1),” Acta Crystallographica Section E, Vol. E66, 2010, p. o2497.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.