Share This Article:

Intraplate Transtensional Tectonics in the East Antarctic Craton: Insight from Buried Subglacial Bedrock in the Lake Vostok—Dome C Region

Abstract Full-Text HTML XML Download Download as PDF (Size:1341KB) PP. 1275-1284
DOI: 10.4236/ijg.2013.49122    3,869 Downloads   5,309 Views   Citations


This study presents the results of forward numerical models of a series of sections of the Aurora Trench (East Antarctica) derived from radio echo-sounding data that allowed to reconstruct the 3D shape of the Aurora Fault, a crustal listric normal fault characterized by a length exceeding 100 km. A similar extensional fault setting allows to replicate the asymmetric buried morphology of the magnetic basement at the Lake Vostok depression derived by the available gravity and magnetic profiles. Both the Aurora and Vostok listric fault reach their basal decollment at 34 km depth, possibly the base of the crust in this intracratonic environment. Integration of these results with the existing geologic interpretations of the tectonic origin of the Concordia Trench by normal faulting allowed to frame the Concordia, Aurora and Vostok normal faults within an intraplate transtensional corridor with a left-lateral movement component. The westward projection of the proposed strike-slip deformation belt may develop in correspondence of an older tectonic lineament stretching from the Eastern flanks of the Gamburtsev Subglacial Mts to the Lambert rift and characterized by a poly-phased complex tectonic history. The possible Cenozoic reactivation of these structures is discussed in the paper.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

P. Cianfarra and F. Salvini, "Intraplate Transtensional Tectonics in the East Antarctic Craton: Insight from Buried Subglacial Bedrock in the Lake Vostok—Dome C Region," International Journal of Geosciences, Vol. 4 No. 9, 2013, pp. 1275-1284. doi: 10.4236/ijg.2013.49122.


[1] D. E. Hayes, “Tectonics and Age of the Oceanic Crust: Circum-Antarctic to 30°S,” In: D. E. Hayes, Ed., Marine Geological and Geophysical Atlas of the Circum-Antarctic to 30°S., American Geophysical Union, Washington DC, 1991, pp. 47-56.
[2] L. A. Lawver and L. M. Gahagan, “Evolution of Cenozoic Seaways in the Circum-Antarctic Region,” Palaeogeography, Palaeoclimatology, Palaeoecology, Vol. 198, No. 1, 2003, pp. 11-37.
[3] T. H. Torsvik, “The Rodinia Jigsaw Puzzle,” Science, Vol. 300, No. 5624, 2003, pp. 1379-1381.
[4] T. A Stern and U. S. ten Brink, “Flexural Uplift of the Transantarctic Mountains,” Journal of Geophysical Research, Vol. 94, No. B8, 1989, pp. 10315-10330.
[5] F. Salvini, G. Brancolini, M. Busetti, F. Storti, F. Mazzarini and F. Coren, “Cenozoic Geodynamics of the Ross Sea Region, Antartica: Crustal Extension, Intraplate Strike-Slip Faulting Tectonic Inheritance,” Journal of Geophysical Research, Vol. 102, No. B11, 1997, pp. 24669-24696.
[6] S. Tonarini, S. Rocchi, P. Armienti and F. Innocenti, “Constraints on Timing of Sea Rifting Inferred from Cenozoic Intrusions from the Northern Victoria Land, Antarctica,” In: C. A. Ricci, Ed., The Antarctic Region: Geological Evolution Processes. Proceedings of the 7th International Symposium on Antarctic Earth Sciences, Terra Antarctica, Siena, 1997.
[7] S. C. Cande, J. M. Stock, R. D. Muller and T. Ishihara, “Cenozoic Motion between East and West Antarctica,” Nature, Vol. 404, No. 6774, 2000, pp. 145-150.
[8] F. Ferraccioli, F. Coren, E. Bozzo, C. Zanolla, S. Gandolfi, I. E. Tabacco and M. Frezzotti, “Rifted Crust at the East Antarctic Craton Margin; Gravity and Magnetic Interpretation along a Traverse across the Wilkes Subglacial Basin Region,” Earth and Planetary Science Letters, Vol. 192, No. 3, 2001, pp. 407-421.
[9] P. Fitzgerald, “Tectonics and Landscape Evolution of the Antarctic Plate Since the Break up of Gondwana, with an Emphasis on the West Antarctic Rift System and the Transantarctic Mountains,” In: J. A. Gamble, D. N. B. Skinner and S. Henry, Eds., Antarctica at the Close of a Millennium, Royal Society of New Zealand Bulletin, Wellington, Vol. 35, 2002, pp. 453-469.
[10] F. Rossetti, F. Lisker, F. Storti and L. A. Laufer, “Tectonic Denudation History of the Rennick Graben (North Victoria Land): Implication for the Evolution of Rifting between East and West Antarctica,” Tectonics, Vol. 22 No. 2, 2003, p. 1016.
[11] T. A. Jordan, F. Ferraccioli, E. Armadillo and E. Bozzo, “Crustal Architecture of the Wilkes Subglacial Basin in East Antarctica, as Revealed from Airborne Gravity Data,” Tectonophysics, Vol. 585, 2012, pp. 196-206.
[12] F. Ferraccioli, C. A. Finn, T. A. Jordan, R. E. Bell, L. M. Anderson and D. Damaske, “East Antarctic Rifting Triggers Uplift of the Gamburtsev Mountains,” Nature, Vol. 479, No. 7373, 2011, pp. 388-394.
[13] S. Bo, M. J. Siegert, S. M. Mudd, D. Sugden, S. Fujita, C. Xiangbin, J. Yunyun, T. Xueyuan and L. Yuansheng, “The Gamburtsev Mountains and the Origin and Early Evolution of the Antarctic Ice Sheet,” Nature, Vol. 459, No. 7248, 2009, pp. 690-693.
[14] R. M. DeConto and D. Pollard, “Rapid Cenozoic Glaciation of Antarctica Induced by Declining Atmospheric CO2,” Nature, Vol. 421, No. 6920, 2003, pp. 245-249.
[15] J. P. Kennet, “Cenozoic Evolution of Antarctic Glaciation, the Circum-Antarctic Oceans and Their Impact on Global Paleoceanography,” Journal of Geophysical Research, Vol. 82, No. 27, 1977, pp. 3843-3859.
[16] M. J. Siegert, J. Taylor and A. J. Payne, “Spectral Roughness of Subglacial Topography and Implication for Former Ice-Sheet Dynamics in East Antarctica,” Global and Planetary Change, Vol. 45, No. 1, 2005, pp. 249-263.
[17] M. Studinger, R. E. Bell, G. D. Karner, A. A. Tikku, J. W. Holt, D. L. Morse, T. G. Richter, S. D. Kempf, M. Peters, D. D. Blankenship, R. E. Sweeney and V. Rystrom, “Ice Cover, Landscape Setting, and Geological Framework of Lake Vostok, East Antarctica,” Earth and Planetary Science Letters, Vol. 205, No. 3-4, 2003, pp. 195-210.
[18] M. Studinger, G. D. Karner, R. E. Bell, V. Levin, C. A. Raymond and A. A. Tikku, “Geophysical Models for the Tectonic Framework of the Lake Vostok Region, East Antarctica,” Earth and Planetary Science Letters, Vol. 216, No. 4, 2003, pp. 663-677.
[19] I. E. Tabacco, P. Cianfarra, A. Forieri, F. Salvini and A. Zirizotti, “Physiography and Tectonic Setting of the Subglacial Lake District between Vostok and Belgica Subglacial Highlands (Antarctica),” Geophysical Journal International, Vol. 165, No. 3, 2006, pp. 1029-1040.
[20] P. Cianfarra, A. Forieri, F. Salvini, I. E. Tabacco and A. Zirizotti, “Geological Setting of the Concordia Trench-Lake System in East Antarctica,” Geophysical Journal International, Vol. 177, No. 3, 2009, pp. 1305-1314.
[21] M. J. Siegert, S. Carter, I. E. Tabacco, S. Popov and D. D. Blankenship, “A Revised Inventory of Antarctic Subglacial Lakes,” Antarctic Science, Vol. 17, No. 3, 2005, pp. 453-460.
[22] I. E. Tabacco, A. Passerini, F. Corbelli and M. Gorman, “Determination of the Surface and Bed Topography at Dome C, East Antarctica,” Journal of Glaciology, Vol. 44, No. 146, 1998, pp. 185-191.
[23] I. E. Tabacco, C. Bianchi, A. Zirizzotti, A. Zuccheretti, A. Forieri and A. Della Vedova, “Airborne Radar Survey above Vostok Region, East Central Antarctica: Ice Thickness Lake Vostok Geometry,” Journal of Glaciology, Vol. 48, No. 160, 2002, pp. 62-69.
[24] A. Forieri, L. Zuccoli, A. Bini, A. Zirizzotti and I. E. Tabacco, “New Bed Topography of Dome C,” Annals of Glaciology, Vol. 39, No. 1, 2004, pp. 321-325.
[25] A. Forieri, I. E. Tabacco, L. Cafarella, S. Urbini, C. Bianchi and A. Zirizotti, “Evidence for Possible New Subglacial Lake along a Radar Transect crossing the Belgica Highlands and the Concordia Trench,” Terra Antarctica Report, Vol. 14, No. 1, 2008, pp. 209-212.
[26] D. W Burbank and R. S. Anderson, “Tectonic Geomorphology,” Blackwell Sciences Ltd, Oxford, 2001.
[27] J. K. Weissel and G. D. Karner, “Flexural Uplift of Rift Flanks Due to Mechanical Unloading of the Lithosphere during Extension,” Journal of Geophysical Research, Vol. 94, No. B10, 1989, pp. 13919-13950.
[28] P. Montone and F. Salvini, “Evidences of Strike-Slip Tectonics in the Apenninic Chain near Tagliacozzo (L’Aquila), Abruzzi, Central Italy,” Bollettino della Societa Geologica Italiana, Vol. 110, 1991, pp. 617-619.
[29] U. S. ten Brink and M. H. Tayor, “Crustal Structure of Central Lake Baikal: Insight into Intracontinental Rifting,” Journal Geophysical Research, Vol. 107, No. B7, 2002, pp. 2-15.
[30] F. Storti, R. E. Holdsworth and F. Salvini, “Intraplate Strike-Slip Deformation Belts,” Geological Society, London, Special Publications, Vol. 210, 2003, pp. 1-14.
[31] F. Salvini, F. Storti and K. McClay, “Self Determining Numerical Modelling of Compressional Fault Bend Folding,” Geology, Vol. 29, No. 9, 2001, pp. 839-842.<0839:SDNMOC>2.0.CO;2
[32] F. Salvini and F. Storti, “Active-Hinge-Folding-Related Deformation and Its Role in Hydrocarbon Exploration and Development—Insight from HCA Modelling,” In: K. R. McClay, Ed., Thrust Tectonics and Hydrocarbon Systems: A.A.P.G. Memoirs 82, American Association of Petroleum Geologist, Tulsa, 2004, pp. 453-472.
[33] I. Y. Filina, D. D. Blankenship, M. Thoma, V. V. Lukin, V. N. Masolov and M. K. Sen, “New 3D Bathymetry and Sediment Distribution in Lake Vostok: Implication for Pre-Glacial Origin and Numerical Modeling Processes within the Lake,” Earth and Planetary Science Letters, Vol. 276, No. 1, 2008, pp. 106-114.
[34] G. L. Leitchenkov, V. N. Masolov, V. V. Lukin, S. A. Bulat, R. G. Kurinin and V. Lipenkov, “Geological Nature of Suglacial Lake Vostok,” Geophysical Research Abstract, Vol. 5, No. 1, 2003, Article ID: 00433.
[35] N. A. Cressie, “The Origins of Kriging,” Mathematical Geology, Vol. 22, No. 3, 1991, pp. 239-252.
[36] J. J. Walsh and J. Watterson, “Analysis of the Relationship between Displacements and Dimensions if Faults,” Journal of Structural Geology, Vol. 10, No. 3, 1998, pp. 239-247.
[37] P. Cianfarra and F. Salvini, “Ice Cap Surface Lineaments in the Vostok-Dome C Area, East Antarctica. What Are They Telling Us on the East Antarctica Craton Tectonics?” Terra Antarctica Reports, Vol. 14, No. 1, 2008, pp. 203-208.
[38] G. Capponi, L. Crispini and M. Meccheri, “Structural History and Tectonic Evolution of the Boundary between the Wilson and Bowers Terranes, Lanterman Range, Northern Victoria Land, Antarctica,” Tectonophysics, Vol. 312, No. 2, 1999, pp. 249-266.
[39] C. A. Ricci, C. Baroni, G. Brancolini, R. Palmeri, F. Salvini and F. Talarico, “La Storia Geologica. Lineamenti Geologici dell’Antartide,” In: C. Baroni, Ed., Antartide Terra di Scienza e Riserva Naturale, Terra Antarctica Publication, Siena, 2001, pp. 88-112.
[40] M. B. Lythe, D. G. Vaughan and the BEDMAP Consortium, “BEDMAP—Bed Topography of the Antarctic. 1:10,000,000 Scale Map,” British Antarctic Survey, Cambridge, 2000.
[41] R. E. Bell, M. Studinger, M. A. Fahnestock and C. A. Shuman, “Tectonically Controlled Subglacial Lakes in the Flanks of the Gamburtsev Subglacial Mountains, East Antarctica,” Geophysical Research Letters, Vol. 33, No. 2, 2006, pp. 1-4.
[42] P. Cianfarra, A. Forieri and F. Salvini, “Modelling the Tectonic Origin of the Adventure Subglacial Trench, East Antarctica,” Geophysical Research Abstract, Vol. 11, No. 1, 2009, p. 8567
[43] M. Studinger, R. E. Bell, W. R. Buck, G. D. Karner and D. D. Blankenship, “Sub-Ice Geology Inland of the Transantarctic Mountains in Light of the New Aerogeophysical Data,” Earth and Planetary Science Letters, Vol. 220, No. 3-4, 2004, pp. 391-408.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.