Share This Article:

Quantum Walk of Two Quantum Particles on One Dimensional System

Abstract Full-Text HTML XML Download Download as PDF (Size:559KB) PP. 138-142
DOI: 10.4236/jqis.2013.34018    3,068 Downloads   5,163 Views  

ABSTRACT

We study two particle quantum walks on one dimensional chain. Probability distribution of two particle quantum walks is dependent on the initial state, and symmetric quantum walk or asymmetric quantum walk is analogous to that of one particle quantum walk. The quantum correlation probability is much different from classical coincidence probability. The difference reflects quantum interference between two particles.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Y. Zhang, J. Xiao and D. Hu, "Quantum Walk of Two Quantum Particles on One Dimensional System," Journal of Quantum Information Science, Vol. 3 No. 4, 2013, pp. 138-142. doi: 10.4236/jqis.2013.34018.

References

[1] M. Barber, “Random and Restricted Walks: Theory and Applications,” Gordon and Breach, New York, 1970.
[2] H. C. Berg, “Random Walk in Biology,” Princeton, 1993.
[3] E. F. Fama, Financ. Anal., J, 51, 75(1995).
http://dx.doi.org/10.2469/faj.v51.n1.1861
[4] A. Ambainis, “Quantum Walks and Their Algorithmic Application,” 2004. arXiv: quantu-ph/0403120v3
[5] A. M. Childs, “Universal Computation by Quantum Walk,” Physical Review Letters, Vol. 102, No. 18, 2009, Article ID: 180501.
http://dx.doi.org/10.1103/PhysRevLett.102.180501
[6] W. Dur, R. Raussendorf, V. M. Kendon and H. Brieget, “Quantum Walks in Optical Lattices,” Physical Review A, Vol. 66, No. 5, 2002, Article ID: 052319.
http://dx.doi.org/10.1103/PhysRevA.66.052319
[7] R. J. Sension, “Biophysics: Quantum Path to Photosynthesis,” Nature, Vol. 446, 2007, pp. 740-741.
http://dx.doi.org/10.1038/446740a
[8] F. Zahringer, et al., “Realization of a Quantum Walk with One and Two Trapped Ions,” Physical Review Letters, Vol. 104, No. 10, 2010, Article ID: 100503.
http://dx.doi.org/10.1103/PhysRevLett.104.100503
[9] P. Xue, B. C. Sanders and D. Leibfried, “Quantum Walk on a Line for a Trapped Ion,” Physical Review Letters, Vol. 103, No. 18, 2009, Article ID: 183602.
http://dx.doi.org/10.1103/PhysRevLett.103.183602
[10] H. B. Perets, Y. Lahini, F. Pozzi, et al., “Realization of Quantum Walks with Negligible Decoherence in Waveguide Lattices,” Physical Review Letters, Vol. 100, No. 17, 2008, Article ID: 170506.
http://dx.doi.org/10.1103/PhysRevLett.100.170506
[11] H. S. Eisenberg, Y. Silberberg, R. Morandotti, et al., “Discrete Spatial Optical Solitons in Waveguide Arrays,” Physical Review Letters, Vol. 81, No. 16, 1998, pp. 3383-3386. http://dx.doi.org/10.1103/PhysRevLett.81.3383
[12] R. Rangel, N. Zagury and E. Massoni, “Dynamics of a Single Trapped Ion inside a Nonideal QED Cavity at Zero Temperature,” Physical Review A, Vol. 69, No. 2, 2004, Article ID: 023805.
http://dx.doi.org/10.1103/PhysRevA.69.023805
[13] P. K. Pathak and G. S. Agarwal, “Quantum Random Walk of Two Photons in Separable and Entangled State,” 2006. arXiv: quant-ph/0604138v3
[14] J. Kempe, “Quantum Random Walks: An Introductory Overview,” 2003. arXiv: quant-ph/0303081v1
[15] X. P. Xu, “Discrete-Time Quantum Walks on One-Dimensional Lattices,” The European Physical Journal B, Vol. 77, No. 4, 2010, pp. 479-488.
http://dx.doi.org/10.1140/epjb/e2010-00267-2
[16] A. Peruzzo, M. Lobino, J. C. F. Matthews, et al., “Quantum Walks of Correlated Photons,” Science, Vol. 329, No. 5998, 2010, pp. 1500-1503.
http://dx.doi.org/10.1126/science.1193515
[17] Y. Bromberg, Y. Lahini, R. Morandotti, et al., “Quantum and Classical Correlations in Waveguide Lattices,” Physical Review Letters, Vol. 102, No. 25, 2009, Article ID: 253904. http://dx.doi.org/10.1103/PhysRevLett.102.253904

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.