Diabetic mouse models

Abstract

The number of patients with lifestyle-related diseases, such as cardiovascular disease, diabetes mellitus, hypertension, atherosclerosis, and cancer, is increasing all over the world, and that of diabetics is increasing especially rapidly. Diabetic animal models have played a key role in elucidating the etiology of diabetes and developing anti-diabetic drugs. In this review, we overviewed characteristics of diabetic mouse models and pharmacological evaluation using the diabetic models.

Share and Cite:

Katsuda, Y. , Ohta, T. , Shinohara, M. , Bin, T. and Yamada, T. (2013) Diabetic mouse models. Open Journal of Animal Sciences, 3, 334-342. doi: 10.4236/ojas.2013.34050.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Wild, S., Roglic, G., Green, A., Sicree, R. and King, H. (2004) Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care, 27, 1047-1053.
http://dx.doi.org/10.2337/diacare.27.5.1047
[2] Inzucchi, S.E. and Sherwin, R.S. (2005) The prevention of type 2 diabetes mellitus. Endocrinology Metabolism Clinics of North America, 34, 199-219.
http://dx.doi.org/10.1016/j.ecl.2004.11.008
[3] Kemmochi, Y., Fukui, K., Maki, M., Kimura, S., Ishii, Y., Sasase, T., Miyajima, K. and Ohta, T. (2013) Metabolic disorders and diabetic complications in Spontaneously Diabetic Torii Leprfa (SDT fatty) Rat, a new obese type 2 diabetic model. Journal of Diabetes Research, Article ID: 948257, 9 pages.
[4] Makino, S., Kunimoto, K., Muraoka, Y., Mizushima, Y., Katagiri, K. and Tochino, Y. (1980) Breeding of nonobese diabetic strain of mice. Experimental Animals, 29, 1-13.
[5] Ohtori, H., Yoshida, T. and Inuma, T. (1968) Small eye and cataract, a new dominant mutation in the mouse. Experimental Animals, 17, 91-96.
[6] Makino, S., Muraoka, Y., Kishimoto, Y. and Hayashi, Y. (1985) Genetic analysis for insulitis in NOD mice. Experimental Animals, 34, 425-432.
[7] Elliott, R.B., Reddy, S.N., Bibby, N.J. and Kida, K. (1988) Dietary prevention of diabetes in the nonobese diabetic mouse. Diabetologia, 31, 62-64.
[8] Williams, A.J., Krug, J., Lampeter, E.F., Mansfield, K., Beales, P.E., Signore, A., Gale, E.A. and Pozzilli, P. (1990) Raised temperature reduces the incidence of diabetes in the NOD mouse. Diabetologia, 33, 635-637.
http://dx.doi.org/10.1007/BF00400211
[9] Ohsugi, T. and Kurosawa, T. (1994) Increased incidence of diabetes mellitus in specific pathogen-eliminated offspring produced by embryo transfer in NOD mice with low incidence of the disease. Laboratory Animal Science, 44, 386-388.
[10] Beales P.E. and Pozzilli, P. (2002) Thiazolidinediones for the prevention of diabetes in the non-obese diabetic (NOD) mouse: Implications for human type 1 diabetes. Diabetes/Metabolism Research and Reviews, 18, 114-117.
http://dx.doi.org/10.1002/dmrr.262
[11] Beales, P.E., Liddi, R., Giorgini, A.E., Signore, A., Procaccini, E., Batchelor, K. and Pozzilli, P. (1998) Troglitazone prevents insulin dependent diabetes in the non-obese diabetic mouse. European Journal of Pharmacology, 357, 221-225. http://dx.doi.org/10.1016/S0014-2999(98)00574-3
[12] Yang, Z., Chen, M., Carter, J.D., Nunemaker, C.S., Garmey, J.C., Kimble, S.D. and Nadler, J.L. (2006) Combined treatment with lisofylline and exendin-4 reverses autoimmune diabetes. Biochemical and Biophysical Research Communications, 344, 1017-1022.
http://dx.doi.org/10.1016/j.bbrc.2006.03.177
[13] Johnson, C.G., Mikulowska, A., Butcher, E.C., McEvoy, L.M. and Michie, S.A. (1999) Anti-CD43 monoclonal antibody L11 blocks migration of T cells to inflamed pancreatic islets and prevents development of diabetes in nonobese diabetic mice. The Journal of Immunology, 163, 5678-5685.
[14] Yokono, K., Amano, K., Suenaga, K., Hari, J., Shii, K., Yaso, S., Yonezawa, K., Imamura, Y. and Baba, S. (1985-1986) Effect of antiserum to monoclonal anti-islet cell surface antibody on pancreatic insulitis in non-obese diabetic mice. Diabetes Research and Clinical Practice, 1, 315-321. http://dx.doi.org/10.1016/S0168-8227(86)80043-2
[15] Yoshioka, M., Kayo, T., Ikeda, T. and Koizumi, A. (1997) A novel locus, Mody4, distal to D7Mit189 on chromosome 7 determines early-onset NIDDM in nonobese C57BL/6 (Akita) mutant mice. Diabetes, 46, 887-894.
http://dx.doi.org/10.2337/diab.46.5.887
[16] Gurley, S.B., Mach, C.L., Stegbauer, J., Yang, J., Snow, K.P., Hu, A., Meyer, T.W. and Coffman, T.M. (2010) Influence of genetic background on albuminuria and kidney injury in Ins2+/C96Y (Akita) mice. American Journal of Physiology-Renal Physiology, 298, F788-F795.
http://dx.doi.org/10.1152/ajprenal.90515.2008
[17] Chang J.H. and Gurley, S.B. (2012) Assessment of diabetic nephropathy in the Akita mice. Methods in Molecular Biology, 933, 17-29.
[18] Ueno, Y., Horio, F., Uchida, K., Naito, M., Nomura, H., Kato, Y., Tsuda, T., Toyokuni, S. and Osawa, T. (2002) Increase in oxidative stress in kidneys of diabetic Akita mice. Bioscience, Biotechnology, and Biochemistry, 66, 869-872. http://dx.doi.org/10.1271/bbb.66.869
[19] de Preux Charles, A.S., Verdier, V., Zenker, J., Peter, B., Médard, J.J., Kuntzer, T., Beckmann, J.S., Bergmann, S. and Chrast, R. (2010) Global transcriptional programs in peripheral nerve endoneurium and DRG are resistant to the onset of type 1 diabetic neuropathy in Ins2 mice. PLoS One, 5, e10832.
http://dx.doi.org/10.1371/journal.pone.0010832
[20] Wright, W.S., Yadav, A.S., McElhatten, R.M. and Harris, N.R. (2012) Retinal blood flow abnormalities following six months of hyperglycemia in the Ins2 (Akita) mouse. Experimental Eye Research, 98, 9-15.
http://dx.doi.org/10.1016/j.exer.2012.03.003
[21] Gastinger, M.J., Kunselman, A.R., Conboy, E.E., Bronson, S.K. and Barber, A.J. (2008) Dendrite remodeling and other abnormalities in the retinal ganglion cells of Ins2 Akita diabetic mice. Investigative Opthalmology & Visual Science, 49, 2635-2642.
http://dx.doi.org/10.1167/iovs.07-0683
[22] Barber, A.J., Antonetti, D.A., Kern, T.S., Reiter, C.E., Soans, R.S., Krady, J.K., Levision, S.W., Gardner, T.W. and Bronson, S.K. (2005) The Ins2Akita mouse as a model of early retinal complications in diabetes. Investigative Opthalmology & Visual Science, 46, 2210-2218.
http://dx.doi.org/10.1167/iovs.04-1340
[23] Han, Z., Guo, J., Conley, S.M. and Naash, M.I. (2013) Retinal angiogenesis in the Ins2 (Akita) mouse model of diabetic retinopathy. Investigative Opthalmology & Visual Science, 54, 574-584.
http://dx.doi.org/10.1167/iovs.12-10959
[24] Koshizaka, M., Takemoto, M., Sato, S., Tokuyama, H., Fujimoto, M., Okabe, E., Ishibashi, R., Ishikawa, T., Tsurutani, Y., Onishi, S., Mezawa, M., He, P., Honjo, S., Ueda, S., Saito, Y. and Yokote, K. (2012) An angiotensin II type 1 receptor blocker prevents renal injury via inhibition of the Notch pathway in Ins2 Akita diabetic mice. Experimental Diabetes Research, 2012, 159874.
http://dx.doi.org/10.1155/2012/159874
[25] Chen, Y., Hu, Y., Lin, M., Jenkins, A.J., Keech, A.C., Mott, R., Lyons, T.J. and Ma, J.X. (2013) Therapeutic effects of PPARα agonists on diabetic retinopathy in type 1 diabetes models. Diabetes, 62, 261-272.
http://dx.doi.org/10.2337/db11-0413
[26] Ingalls, A.M., Dickie, M.M. and Snell, G.D. (1950) Obese, a new mutation in the house mouse. Journal of Heredity, 41, 317-318.
[27] Drasher, M.L., Dickie, M.M. and Lane, W.D. (1955) Physiological differences in uteri of obese stock mice. A comparison between obese mice and their thin sibs. Journal of Heredity, 46, 209-212.
[28] Contaldo, F., Gerber, H., Coward, W.A. and Trayhurn, P. (1981) Milk intake in pre-weanling genetically obese (ob/ ob) mice. In: Enzi, G., Crepaldi, G., Pozza, G. and Renold, A.E., Eds., Obesity: Pathogenesis and Treatment, Academic Press, London/New York, 319-322.
[29] Memon, R.A., Grunfeld, C., Moser, A.H. and Feingold, K.R. (1194) Fatty acid synthesis in obese insulin resistant diabetic mice. Hormone and Metabolic Research, 26, 85-87. http://dx.doi.org/10.1055/s-2007-1000778
[30] Begin-Heick, N. (1996) Beta-adrenergic receptors and Gprotein in the ob/ob mouse. International Journal of Obesity, 20, S32-S35.
[31] Takeshita, S., Kawamura, I., Yasuno, T., Kimura, C., Yamamoto, T., Seki, J., Tamura, A., Sakurai, H. and Goto, T. (2001) Amelioration of insulin resistance in diabetic ob/ob mice by a new type of orally avtive insulin-mimetic vanadyl complex: Bis(1-oxy-2-piridinethiolato)oxovanadium(IV) with VO(S(2)O(2)) coordination mode. Journal of Inorganic Biochemistry, 85, 179-186.
http://dx.doi.org/10.1016/S0162-0134(01)00192-1
[32] Mackay, P., Ynddal, L., Andersen, J.V. and McCormack, J.G. (2003) Pharmacokinetics and anti-hyperglycaemic efficacy of a novel inhibitor of glycogen phosphorylase, 1,4-dideoxy-1,4-imino-d-arabinitol, in glucagon-challenged rats and dogs and in diabetic ob/ob mice. Diabetes, Obesity, and Metabolism, 5, 397-407.
http://dx.doi.org/10.1046/j.1463-1326.2003.00293.x
[33] Schaeffer, P., Bernat, A., Arnone, M., Manara, L., Gallas, J.F., Dol-Gleizes, F., Millet, L., Grosset, A. and Herbert, J.M. (2206) Effect of SR58611A, a potent beta-3 adrenoceptor agonist, on cutaneous wound healing in diabetic and obese mice. European Journal of Pharmacology, 529, 172-178. http://dx.doi.org/10.1016/j.ejphar.2005.11.005
[34] Irwin, N., McClean, P.L., Cassidy, R.S., O’harte, F.P., Green, B.D., Gault, V.A., Harriott, P. and Flatt, P.R. (2007) Comparison of the anti-diabetic effects of GIPand GLP-1-receptor activation in obese diabetic (ob/ob) mice: Studies with DPP IV resistant N-AcGIP and exendin(1-39)amide. Diabetes/Metabolism Research and Reviews, 23, 572-579. http://dx.doi.org/10.1002/dmrr.729
[35] Fukuda, S., Ohta, T., Sakata, S., Morinaga, H., Ito, M., Nakagawa, Y., Tanaka, M. and Matsushita, M. (2010) Pharmacological profiles of a novel protein tyrosine phosphatase1B inhibitor, JTT-551. Diabetes, Obesity, and Metabolism, 12, 299-306.
http://dx.doi.org/10.1111/j.1463-1326.2009.01162.x
[36] Hummel, K.P., Dickie, M.M. and Coleman, D.L. (1966) Diabetes, a new mutation in the mouse. Science, 153, 1127-1128.
http://dx.doi.org/10.1126/science.153.3740.1127
[37] Allen, T.J., Cooper, M.E. and Lan, H.Y. (2004) Use of genetic mouse models in the study of diabetic nephropathy. Current Diabetes Reports, 4, 435-440.
http://dx.doi.org/10.1007/s11892-004-0053-1
[38] Sharma, K., McCue, P. and Dunn, S.R. (2003) Diabetic kidney disease in the db/db mice. American Journal of Physiology-Renal Physiology, 284, F1138-F1144.
[39] Islam, M.S. (2013) Animal models of diabetic neuropathy: Progress since 1960s. Journal of Diabetes Research, 2013, Article ID: 149452.
http://dx.doi.org/10.1155/2013/149452
[40] Midena E., Segato, T., Radin, S., di Giorgio, G., Meneghini, F., Piermarocchi, S. and Belloni, A.S. (1989) Studies on the retina of the diabetic db/db mouse. I. Endothelial cell-pericyte ratio. Ophthalmic Research, 21, 106-111.
http://dx.doi.org/10.1159/000266787
[41] Robertson, D.M. and Sima, A.A. (1980) Diabetic neuronpathy in the mutant mouse [C57BL/ks(db/db)]: A morphometric study. Diabetes, 29, 60-67.
http://dx.doi.org/10.2337/diab.29.1.60
[42] Sima, A.A. and Robertson, D.M. (1978) Peripheral neuropathy in mutant diabetic mouse [C57BL/ks (db/db)]. Acta Neuropathologica, 41, 85-89.
http://dx.doi.org/10.1007/BF00689757
[43] Oshima, H., Yoshida, S., Ohishi, T., Matsui, T., Tanaka, H., Yonetoku, Y., Shibasaki, M. and Uchiyama, Y. (2013) Novel GPR119 agonist AS1669058 potentiates insulin secretion from rat islets and has potent anti-diabetic effects in ICR and diabetic db/db mice. Life Science, 92, 167-173. http://dx.doi.org/10.1016/j.lfs.2012.11.015
[44] Wang, C.D., Teng, B.S., He, Y.M., Wu, J.S., Pan, D., Pan, L.F., Zhang, D., Fan, Z.H., Yang, H.J. and Zhou, P. (2012) Effect of a novel proteoglycan PTP1B inhibitor from Ganoderma lucidum on the amelioration of hyperglycaemia and dyslipidaemia in db/db mice. British Journal of Nutrition, 108, 2014-2025.
http://dx.doi.org/10.1017/S0007114512000153
[45] Kawashima, S., Matsuoka, T.A., Kaneto, H., Tochino, Y., Kato, K., Yamamoto, K., Yamamoto, T., Matsuhisa, M. and Shimomura, I. (2011) Effect of alogliptin, pioglitazone and glargine on pancreatic β-cells in diabetic db/db mice. Biochemical and Biophysical Research Communications, 404, 534-540.
http://dx.doi.org/10.1016/j.bbrc.2010.12.021
[46] Kim, H.W., Lee, J.E., Cha, J.J., Hyun, Y.Y., Kim, J.E., Lee, M.H., Song, H.K., Nam, D.H., Han, J.Y., Han, S.Y., Han, K.H., Kang, Y.S. and Cha, D.R. (2013) Fibroblast growth factor 21 improves insulin resistance and ameliorates renal injury in db/db mice. Endocrinology, 154, 3366-3376. http://dx.doi.org/10.1210/en.2012-2276
[47] Loeffler, I., Ruester, C., Franks, S., Liebisch, M. and Wolf, G. (2013) Erythropoietin ameliorates podocyte injury in advanced diabetic nephropathy in the db/db mice. American Journal of Physiology-Renal Physiology.
http://dx.doi.org/10.1152/ajprenal.00643.2012
[48] Seok, S.J., Lee, E.S., Kim, G.T., Hyun, M., Lee, J.H., Chen, S., Choi, R., Kim, H.M., Lee, E.Y. and Chung, C.H. (2013) Blockade of CCL2/CCR2 signaling ameliorates diabetic nephropathy in db/db mice. Nephrology Dialysis Transplantation, 28, 1700-1710.
http://dx.doi.org/10.1093/ndt/gfs555
[49] Zhang, L., Li, R., Shi, W., Liang, X., Liu, S., Ye, Z., Yu, C., Chen, Y., Zhang, B., Wang, W., Lai, Y., Ma, J., Li, Z. and Tan, X. (2013) NFAT2 inhibitor ameliorates diabetic nephropathy and podocyte injury in db/db mice. British Journal of Pharmacology, 170, 426-439.
[50] Nagata, T., Fukuzawa, T., Takeda, M., Fukazawa, M., Mori, T., Nihei, T., Honda, K., Suzuki, Y. and Kawabe, Y. (2013) Tofogliflozin, a novel sodium-glucose co-transporter 2 inhibitor, improves renal and pancreatic function in db/db mice. British Journal of Pharmacology, 170, 519-531. http://dx.doi.org/10.1111/bph.12269
[51] Kim, J.E., Lee, M.H., Nam, D.H., Song, H.K., Kang, Y.S., Lee, J.E., Kim, H.W., Cha, J.J., Hyun, Y.Y., Han, S.Y., Han, K.H., Han, J.Y. and Cha, D.R. (2013) Celastrol, an NF-κB inhibitor, improves insulin resistance and attenuates renal injury in db/db mice. PLoS One, 8, Article ID: E62068. http://dx.doi.org/10.1371/journal.pone.0062068
[52] Kondo, K., Nozawa, K., Tomita,T. and Ezaki, K. (1957) Inbred strains resulting from Japanese mice. Bull Experimental Animals, 6, 107-112.
[53] Nakamura, M. (1962) A diabetic strain of the mouse. Proceedings of the Japan Academy, 38, 348-352.
[54] Nishimura, M. (1969) Breeding of mice strains for diabetes mellitus. Experimental Animals, 18, 147-157.
[55] Bultman, S., Michaud, E.J. and Woychik, R.P. (1992) Molecular characterization of the mouse agouti locus. Cell, 71, 1195-1204.
http://dx.doi.org/10.1016/S0092-8674(05)80067-4
[56] Michaud, E.J., Bultman, S.J., Klebig, M.L., van Vugt, M.J., Stubbs, L.J., Russell, L.B. and Woychik, R.P. (1994) A molecular model for the genetic and phenotypic characteristics of the mouse lethal yellow (Ay) mutation. Proceedings of the National Academy of Science, 91, 2562-2566. http://dx.doi.org/10.1073/pnas.91.7.2562
[57] Iwatsuka, H. and Shino, A. (1970) Studies on diabetogenic action of obesity in mice: Congenital insulin resistance of KK mice. Endocrine Journal, 17, 535-540.
http://dx.doi.org/10.1507/endocrj1954.17.535
[58] Iwatsuka, H., Taketomi, S., Matsuo, T. and Suzuoki, Z. (1974) Congenitally impaired hormone sensitivity of the adipose tissue of spontaneously diabetic mice, KK. Validity of thrifty genotype in KK mice. Diabetologia, 10, 611-616. http://dx.doi.org/10.1007/BF01221994
[59] Taketomi, S., Tsuda, M., Matsuo, T., Iwatsuka, H. and Suzuoki, Z. (1973) Alternations of hepatic enzyme activeties in KK and yellow KK mice with various diabetic states. Hormone and Metabolic Research, 5, 333-339.
http://dx.doi.org/10.1055/s-0028-1093938
[60] Hofman, C., Lorenz, K. and Colca, J.R. (1991) Glucose transport deficiency in diabetic animals is corrected by treatment with oral antihyperglycemic agent pioglitazone. Endocrinology, 129, 1915-1925.
http://dx.doi.org/10.1210/endo-129-4-1915
[61] Iwatsuka, H., Shino, A. and Suzuoki, Z. (1970) General survey of diabetic features of yellow KK mice. Endocrine Journal, 17, 23-35.
http://dx.doi.org/10.1507/endocrj1954.17.23
[62] Fujita, T., Sugiyama, Y., Taketomi, S., Sohda, T., Kawamatsu, Y., Iwatsuka, H. and Suzuoki, Z. (1983) Reduction of insulin resistance in obese and/or diabetic animals by 5-{4-(1-methylcyclohexylmethoxy)benzyl}-thiazolidine-2,4-dione (ADD-3878, U-63,287, ciglitazone) a new antidiabetic agent. Diabetes, 32, 804-810.
http://dx.doi.org/10.2337/diab.32.9.804
[63] Ikeda, H., Taketomi, S., Sugiyama, Y., Shimura, Y., Sohda, T., Meguro, K. and Fujita, T. (1990) Effects on pioglitazone on glucose and lipid metabolism in normal and insulin resistant animals. Arzneimittelforschung, 40, 156-162.
[64] Willson, T.M., Cobb, J.E., Cowan, D.J. Wiethe, R.W., Correa, I.D., Prakash, S.R., Beck, K.D., Moore, L.B., Kliewer, S.A. and Lehmann, J.M. (1996) The structure-activity relationship between peroxisome proliferator-activated receptor gamma agonism and the antihyperglycemic avtivity of thiazolidinediones. Journal of Medicinal Chemistry, 39, 665-668.
http://dx.doi.org/10.1021/jm950395a
[65] Adachi, Y., Yoshikawa, Y., Kodera, Y., Katoh, A., Takeda, J. and Sakurai, H. (2006) Improvement in diabetes, obesity and hypertension in type 2 diabetic KKA(y) mice by bis(allixunato)oxovanadium(IV) complex. Biochemical and Biophysical Research Communications, 345, 945-950.
http://dx.doi.org/10.1016/j.bbrc.2006.05.003
[66] Suzuki, W., Iizuka, S., Tabuchi, M., Funo, S., Yanagisawa, T., Kimura, M., Sato, T., Endo, T. and Kawamura, H. (1999) A new mouse model of spontaneous diabetes derived from ddY strain. Experimental Animals, 48, 181-189.
http://dx.doi.org/10.1538/expanim.48.181
[67] Hirayama, I., Yi, Z., Izumi, S., Arai, I., Suzuki, W., Nagamachi, Y., Kuwano, H., Takeuchi, T. and Izumi, T. (1999) Genetic analysis of obese diabetes in the TSOD mouse. Diabetes, 48, 1183-1191.
http://dx.doi.org/10.2337/diabetes.48.5.1183
[68] Iizuka, S., Suzuki,W., Tabuchi, M., Nagata, M., Imamura, S., Kobayashi, Y., Kanitani, M., Yanagisawa, T., Kase, Y., Takeda, S., Aburada, M. and Takahashi, K.W. (2005) Diabetic complications in a new animal model (TSOD mouse) of spontaneous NIDDM with obesity. Experimental Animals, 54, 71-83.
http://dx.doi.org/10.1538/expanim.54.71

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.