Share This Article:

The First Integral Method for Solving Maccari’s System

Abstract Full-Text HTML Download Download as PDF (Size:75KB) PP. 258-263
DOI: 10.4236/am.2011.22030    4,690 Downloads   9,294 Views   Citations

ABSTRACT

In this paper, we investigate the first integral method for solving the solutions of Maccari’s system. This idea can obtain some exact solutions of this system based on the theory of Commutative algebra.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

D. Rostamy, F. Zabihi, K. Karimi and S. Khalehoghli, "The First Integral Method for Solving Maccari’s System," Applied Mathematics, Vol. 2 No. 2, 2011, pp. 258-263. doi: 10.4236/am.2011.22030.

References

[1] Z. Feng, “On Explicit Exact Solutions to the Compound Burgers-KdV Equation,” Physics Letters A, Vol. 293, No. 1, 2002, pp. 57-66. doi:10.1016/S0375-9601(01)00825-8
[2] X. Deng, “Traveling Wave Solutions for the Generalized Burgers Huxley Equation,” Applied Mathematics and Computation, Vol. 204, No. 2, 2008, pp. 733-737. doi:10.1016/j.amc.2008.07.020
[3] R. Z. Feng and G. Chenb, “Solitary Wave Solutions of the Compound Burgers-Korteweg-de Vries Equation,” Physica A, Vol. 352, No. 2-4, 2005, pp. 419-435. doi:10.1016/j.physa.2004.12.061
[4] Z. Feng, “Traveling Wave Behavior for a Generalized Fisher Equation,” Chaos, Solitons & Fractals, Vol. 38, No. 2, 2008, pp. 481-488. doi:10.1016/j.chaos.2006.11.031
[5] Z. Feng and Y. Li, “Complex Traveling Wave Solutions to the Fisher Equation,” Physica A, Vol. 366, 2006, pp. 115-123. doi:10.1016/j.physa.2005.10.058
[6] A. Z. Feng, “Exact Solution to an Approximate Sine-Gordon Equation in (n + 1)-Dimensional Space,” Physics Letters A, Vol. 302, No. 2-3, 2002, pp. 64-76. doi:10.1016/S0375-9601(02)01114-3
[7] Z. Feng and X. Wang, “The First Integral Method to the Two-Dimensional Burgers-Korteweg-de Vries Equation,” Physics Letters A, Vol. 308, No. 2-3, 2003, pp. 173-178. doi:10.1016/S0375-9601(03)00016-1
[8] Z. Feng and R. Knobel, “Traveling Waves to a Burgers- Korteweg-de Vries-Type Equation with Higher-Order Nonlinearities,” Journal of Mathematical Analysis and Applications, Vol. 328, No. 2, 2007, pp. 1435-1450. doi:10.1016/j.jmaa.2006.05.085
[9] H. Li and Y. Guo, “New Exact Solutions to the Fitzhugh-Nagumo Equation,” Applied Mathematics and Computation, Vol. 180, No. 2, 2006, pp. 524-528. doi:10.1016/j.amc.2005.12.035
[10] B. Lu, H. Zhang and F. Xie, “Traveling Wave Solutions of Nonlinear Partial Equations by Using the First Integral Method,” Applied Mathematics and Computation, Vol. 216, No. 4, 2010, pp. 1329-1336. doi:10.1016/j.amc.2010.02.028
[11] A. Maccari, “The Kadomtsev-Petviashvili Equation as a Source of Integrable Model Equations,” Journal of Mathematical Physics, Vol. 37, 1996, pp. 5897-6590. doi:10. \1063/1.531773
[12] L. F. Tascan, A. Bekir and M. Koparan, “Travelling Wave Solutions of Nonlinear Evolution Equations by Using the First Integral Method,” Communications in Nonlinear Science and Numerical Simulation, Vol. 14, No. 5, 2009, pp. 1810-1815. doi:10.1016/j.cnsns.2008.07.009
[13] T S. Zhang, “Exp-Function Method for Solving Maccari’s System, Physics Letters A, Vol. 371, No. 1-2, 2007, pp. 65-71. doi:10.1016/j.physleta.2007.05.091
[14] Z. Feng, “On Explicit Exact Solutions to the Compound Burgers-KdV Equation,” Physics Letters A, Vol. 293, No. 1-2, 2002, pp. 57-66. doi:10.1016/S0375-9601(01)00825-8
[15] T. R. Ding and C. Z. Li, “Ordinary Differential Equations,” Peking University Press, Peking, 1996.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.