Share This Article:

Efficient Somatic Embryogenesis and Organogenesis of Self-Pollination Artemisia annua Progeny and Artemisinin Formation in Regenerated Plants

Abstract Full-Text HTML Download Download as PDF (Size:3815KB) PP. 2206-2217
DOI: 10.4236/ajps.2013.411274    3,963 Downloads   5,873 Views   Citations

ABSTRACT

To enhance the understanding of artemisinin biosynthesis, we have successfully bred self-pollination Artemisia annua plants. Here, we report efficient somatic embryogenesis and organogenesis of self-pollination plants and artemisinin formation in regenerated plants. The first through sixth nodal leaves of seedlings are used as explants. On agar-solidified MS basal medium supplemented with TDZ (0.6 mg/l) and IBA (0.1 mg/l), all explants after inoculation of less than 3 weeks start to form embryogenic calli, which further produce globular, torpedo, heart and early cotyledon embryos. In all six positional leaves, explants from the sixth leaf show the rapidest responses to induction of embryogenic calli and somatic embryos. On this medium, somatic embryos continuously develop into adventitious buds, which can form adventitious roots on a rooting medium containing NAA (0.5 mg/l). Meanwhile, on agar-solidified MS basal medium supplemented with BAP (1 mg/l) and NAA (0.05 mg/l), approximately 100% of explants from leaves #3-6 form calli in less than 3 weeks of inoculation and adventitious buds via organogenesis in 3-4 weeks. In all six positional leaves, explants from the sixth leaf exhibit the rapidest response to induction of calli and adventitious buds. Nearly 100% adventitious buds can form adventitious roots on the rooting medium. Regenerated plants from both somatic embryogenesis and organogenesis complete self-pollination to produce seeds in 80-90 days of growth in growth chamber. LC-ESI-MS analysis demonstrates that regenerated plants biosynthesize artemisinin. These results show the highly efficient regeneration capacity of self-pollination A. annua plants that can form a new platform to enhance the understanding of artemisinin biosynthesis and metabolic engineering.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

F. Alejos-Gonzalez, K. Perkins, M. Winston and D. Xie, "Efficient Somatic Embryogenesis and Organogenesis of Self-Pollination Artemisia annua Progeny and Artemisinin Formation in Regenerated Plants," American Journal of Plant Sciences, Vol. 4 No. 11, 2013, pp. 2206-2217. doi: 10.4236/ajps.2013.411274.

References

[1] WHO, “Artemisinin and Its Derivatives as Anti-Malarial Drugs,” WHO, Geneva, 1998.
[2] F. Alejos-Gonzalez, G. S. Qu, L. L. Zhou, C. H. Saravitz, J. L. Shurtleff and D.-Y. Xie, “Characterization of Development and Artemisinin Biosynthesis in Self-Pollinated Artemisia annua Plants,” Planta, Vol. 234, No. 4, 2011, pp. 685-697.
[3] WHO, “Meeting on the Production of Artemisinin and Artemisinin-Based Combination Therapies,” WHO, Arusha, 2006.
[4] WHO, “Good Procurement Practices for Artemisinin-Based Antimalarial Medicines,” WHO Global Malaria Programme, WHO, Geneva, 2010.
[5] I. A. Graham, K. Bessr, S. Blumer, C. A. Branigan, T. Czechowski, L. Elias, I. Guterman, D. Harvey, P. G. Isaac, A. M. Khan, T. R. Larson, Y. Li, T. Pawson, T. Penfield, M. F. Smallwood, V. Segura, T. Townsend, D. Vyas, T. Winzer and D. Bowles, “The Genetic Map of Artemisia annua L. Identifies Loci Affecting Yield of the Antimalarial Drug Artemisinin,” Science, Vol. 327, No. 5963, 2010, pp. 328-331.
http://dx.doi.org/10.1126/science.1182612
[6] J.-M. Liu, M.-Y. Ni, J-F. Fan, Y.-Y. Tu, Z.-H. Wu and Y.-L. Wu, “Structure and Reaction of Arteannuin,” Acta Chimica Sinica, Vol. 37, No. 2, 1979, pp. 129-143.
[7] Zhong-Yi-Yan-Jiu-Yue-Zhong-Yao-Yan-Jiu-Suo, “Antimalarial Studies of Artemisia annua L:1971-1978,” Zhong Yi Yan Jiu Yue Zhong Yao Yan Jiu Suo, Beijing, 1978.
[8] WHO, “The Role of Artemisinin and Its Derivatives in the Current Treatment of Malaria (1994-1995),” Unpublished Document, WHO/MAL/94.1067, World Health Organization, Geneva, 1994.
[9] J. F. S. Ferreira, “Cultivation and Genetics of Artemisia annua L. for Increased Production of the Antimalarial Artemisinin,” Plant Genetic Resources: Characterization and Utilization, Vol. 3, No. 2, 2005, pp. 206-229.
http://dx.doi.org/10.1079/PGR200585
[10] E. V. Geldre, A. Vergauwe and E. V. den Eeckhout, “State of the Art of the Production of the Antimalarial Compound Artemisinin in Plants,” Plant Molecular Biology, Vol. 33, No. 2, 1997, pp. 199-209.
http://dx.doi.org/10.1023/A:1005716600612
[11] J. Cockram, C. Hill, C. Burns, R. R. J. Arroo, J. G. Woolley, I. Flockart, T. Robison, C. J. Atkinson, M. J. Davies, N. Dungey, A. J. Greenland, L. Smith and S. Bentley, “Screening a Diverse Collection of Artemisia annua Germplasm Accessions for the Antimalarial Compound, Artemisinin,” Plant Genetic Resources, Vol. 10, No. 2, 2012, pp. 152-154.
http://dx.doi.org/10.1017/S1479262112000159
[12] T. E. Wallaart, N. Pras and W. J. Quax, “Seasonal Variations of Artemisinin and Its Biosynthetic Precursors in Tetraploid Artemisia annua Plants Compared with the Diploid Wild-Type,” Planta Medica, Vol. 65, No. 8, 1999, pp. 723-728. http://dx.doi.org/10.1055/s-1999-14094
[13] M. S. R. Nair, N. Acton, D. L. Klayman, K. Kendrick, D. V. Basile and S. Mante, “Production of Artemisinin in Tissue Cultures of Artemisia annua,” Journal of Natural Products, Vol. 49, No. 3, 1986, pp. 504-507.
[14] D. V. Basile, N. Akhtari, Y. Durand and M. S. R. Nair, “Toward the Production of Artemisinin through Tissue Culture: Nutrient-Hormone Combinations Suitable for Cell Suspension Cultures,” In Vitro Cellular and Developmental Biology: Plant, Vol. 29, No. 3, 1993, pp. 143-147. http://dx.doi.org/10.1007/BF02632286
[15] J. F. S. Ferreira, J. E. Simon and J. Janick, “Relationship of Artemisinin Content of Tissue-Cultured, Greenhouse, and Field-Grown Plants of Artemisia annua,” Planta Medica, Vol. 61, No. 4, 1995, pp. 351-355.
http://dx.doi.org/10.1055/s-2006-958098
[16] G. Cai, G. Li, H. Ye and G. F. Li, “Hairy Root Culture of Artemisia annua L. by Ri Plasmid Transformation and Biosynthesis of Artemisinin,” Chinese Journal of Biotechnology, Vol. 11, No. 4, 1995, pp. 227-235.
[17] D.-Y. Xie, H. Ye, G. Li and Z. Guo, “Artemisia annua L. Transformation with Different Agrobacterium rhizogenesis and Large Scale Culture of Hairy Roots for Artemisinin (Qinghaosu) Production,” In: Agricultural Biotechnology: Laboratory, Field and Market, CPN Publications, Darwin, 1998, pp. 134-136.
[18] S. Banerjee, M. Zehra and M. M. Kumar, “Agrobacterium rhizogenes-Mediated Transformation of Artemisia annua: Production of Transgenic Plants,” Planta Medica, Vol. 63, No. 5, 1997, pp. 467-469.
http://dx.doi.org/10.1055/s-2006-957737
[19] B. Ghost, S. Mukherjee and S. Jha, “Genetic Transformation of Artemisia annua by Agrobacterium tumefaciens and Artemisinin Synthesis in Transformed Cultures,” Plant Science, Vol. 122, No. 2, 1997, pp. 193-199.
http://dx.doi.org/10.1016/S0168-9452(96)04558-X
[20] K. H. Teoh, D. R. Polichak, D. W. Reed, G. Nowak and P. S. Covello, “Artemisia annua L. (Asteraceae) Trichome-Specific cDNAs Reveal CYP71AV1, a Cytochrome P450 with a Key Role in the Biosynthesis of the Antimalarial Sesquiterpene Lactone Artemisinin,” FEBS Letters, Vol. 580, No. 5, 2006, pp. 1411-1416.
http://dx.doi.org/10.1016/j.febslet.2006.01.065
[21] L. Zhang, F. Y. Jing, F. P. Li, M. Y. Li, Y. L. Wang, G. F. Wang, X. F. Sun and K. X. Tang, “Development of transgenic Artemisia annua (Chinese Wormwood) Plants with an Enhanced Content of Artemisinin, an Effective Anti-Malarial Drug, by Hairpin-RNA-Mediated Gene Silencing,” Biotechnology Applied Biochemistry, Vol. 52, No. 3, 2009, pp. 199-207.
http://dx.doi.org/10.1042/BA20080068
[22] H. J. Bouwmeester, T. E. Wallaart, M. H. A. Jansen, B. van Loo, B. J. M. Jansen, M. A. Posthumus, C. O. Schmidt, J.-W. Kraker, W. A. Konig and M. C. R. Franssen, “Amorpha-4,11-Diene Synthase Catalyses the First Probable Step in Artemisinin Biosynthesis,” Phytochemistry, Vol. 52, No. 5, 1999, pp. 843-854.
http://dx.doi.org/10.1016/S0031-9422(99)00206-X
[23] P. S. Covello, K. H. Teoh, D. R. Polichuk, D. W. Reed and G. Nowak, “Functional Genomics and the Biosynthesis of Artemisinin,” Phytochemistry, Vol. 68, No. 14, 2007, pp. 1864-1971.
http://dx.doi.org/10.1016/j.phytochem.2007.02.016
[24] D.-K. Ro, E. M. Paradise, M. Oueller, K. J. Fisher, K. L. Newman, J. M. Ndungu, K. A. Ho, R. A. Eachus, T. S. Ham, J. Kirby, M. C. Y. Chang, S. T. Withers, Y. Shiba, R. Sarpong and J. D. Keasling, “Production of the Antimalarial Drug Precursor Artemisinic Acid in Engineered Yeast,” Nature, Vol. 440, No. 7086, 2006, pp. 940-943.
http://dx.doi.org/10.1038/nature04640
[25] Y. Zhang, K. H. Teoh, D. W. Reed and P. S. Covello, “Molecular Cloning and Characterization of Dbr1, a 2-Alkenal Reductase from Artemisia annua,” Botany, Vol. 87, No. 6, 2009, pp. 643-649.
http://dx.doi.org/10.1139/B09-033
[26] Y. Zhang, K. H. Teoh, D. W. Reed, L. Maes, A. Goossens, D. J. H. Olson, A. R. S. Ross and P. S. Covello, “The molecular Cloning of Artemisinic Aldehyde Δ-11(13) Reductase and Its Role in Glandular Trichome-Dependent Biosynthesis of Artemisinin in Artemisia annua,” Journal Biological Chemistry, Vol. 283, No. 31, 2008, pp. 21501-21508. http://dx.doi.org/10.1074/jbc.M803090200
[27] N. Delabays, X. Simonnet and M. Gaudin, “The Genetics of Artemisinin Content in Artemisia annua L. and the Breeding of High Yielding Cultivars,” Current Medicinal Chemistry, 2001. Vol. 8, No. 15, 2001, pp. 1795-1801.
[28] N. Delabays, A. Benakis and G. Collet, “Selection and Breeding for High Artemisinin (Qinghaosu) Yielding Strains of Artemisia annua,” Acta Horticulture, Vol. 330, No. 1, 1993, pp. 203-207.
[29] D.-Y. Xie, H. Ye and G. Li, “The Progress of Artemisia annua Research—The Application of Biotechnology and Prospects,” Chinese Bulletin Botany, Vol. 12, No. 4, 1995, pp. 28-31. (in Chinese)
[30] H. J. Woerdenbag, N. Pras and A. W. Alfermann, “Production of Artemisinin in Shoot Cultures of Artemisia annua,” Planta Medica, Vol. 57, 1991, pp. A91-A92.
http://dx.doi.org/10.1055/s-2006-960369
[31] H. M. Elhag, M. M. El-Domiaty, F. S. El-Olemy, J. S. Mossa and M. M. El-Olemy, “Selection and Micropropagation of High Artemisinin Producing Clones of Artemisia annua L.,” Phytotherapy Research, Vol. 6, No. 1, 1992, pp. 20-24. http://dx.doi.org/10.1002/ptr.2650060106
[32] H. J. Woerdenbag, J. F. J. Lüers, Wv. Uden, N. Pras, T. M. Malingré and A. W. Alfermann, “Production of the New Antimalarial Drug Artemisinin in Shoot Cultures of Artemisia annua,” Planta Medica, Vol. 58, No. S1, 1992, pp. 620-621. http://dx.doi.org/10.1055/s-2006-961621
[33] H. J. Woerdenbag, J. F. J. Luers, W. Vanuden, N. Pras, T. M. Malingre and A. W. Alfermann, “Production of the New Antimalarial Drug Artemisinin in Shoot Cultures of Artemisia annua L,” Plant Cell, Tissue, and Organ Culture, Vol. 32, No. 2, 1993, pp. 247-257.
http://dx.doi.org/10.1007/BF00029850
[34] N. B. Paniego and A. M. Giulietti, “Artemisia annua L.: Dedifferentiated and differentiated cultures,” Plant Cell, Tissue, and Organ Culture, Vol. 36, No. 2, 1994, pp. 163-168. http://dx.doi.org/10.1007/BF00037715
[35] A. Gulati, S. Bharel, S. K. Jain, M. Z. Abdin and P. S. Srivastava, “In Vitro Micropropagation and Flowering in Artemisia annua,” Journal of Plant Biochemistry and Biotechnology, Vol. 5, No. 1, 1996, pp. 31-35.
http://dx.doi.org/10.1007/BF03262976
[36] W. Lualon, W. De-Eknamkul, H. Tanaka, Y. Shoyama and W. Putalun, “Artemisinin Production by Shoot Regeneration of Artemisia annua L. Using Thidiazuron,” Zeitschrift für Naturforschung C, Vol. 63, No. 1/2, 2008, pp. 96-100.
[37] T. Murashige and F. Skoog, “A Revised Medium for Rapid Growth and Bioassays with Tobacco Tissue Culture,” Physiologia Plantarum, Vol. 15, No. 3, 1962, pp. 473-497.
http://dx.doi.org/10.1111/j.1399-3054.1962.tb08052.x
[38] K. L. Chan, C. K. H. Teo, S. Jinadasa and K. H. Yuen, “Selection of High Artemisinin Yielding Artemisia annua,” Planta Medica, Vol. 61, No. 3, 1995, pp. 285-287.
http://dx.doi.org/10.1055/s-2006-958078
[39] D. C. Jain, A. K. Mathur, M. M. Gupta, A. K. Singh, R. K. Verma, A. P. Gupta and S. Kumar, “Isolation of High Artemisinin-Yielding Clones of Artemisia annua,” Phytochemistry, Vol. 43, No. 5, 1996, pp. 993-1001.
http://dx.doi.org/10.1016/S0031-9422(96)00369-X
[40] A. Vergauwe, R. Cammaert, D. Vandenberghe, C. Genetello, D. Inzé, M. Montagu and E. Eeckhout, “Agrobacterium tumefaciens-Mediated Transformation of Artemisia annua L. and Regeneration of Transgenic Plants,” Plant Cell Reports, Vol. 15, No. 12, 1996, pp. 929-933.
http://dx.doi.org/10.1007/BF00231590
[41] A. Vergauwe, E. Van Geldre, D. Inzé, M. Van Montagu and E. Van den Eeckhout, “Factors Influencing Agrobacterium tumefaciens-Mediated Transformation of Artemisia annua L.,” Plant Cell Reports, Vol. 18, No. 1, 1998, pp. 105-110. http://dx.doi.org/10.1007/s002990050540
[42] J.-L. Han, H. Wang, H.-C. Ye, Y. Liu, Z.-Q. Li, Y. Zhang, Y.-S. Zhang, F. Yan and G.-F. Li, “High Efficiency of Genetic Transformation and Regeneration of Artemisia annua L. via Agrobacterium tumefaciens-Mediated Procedure,” Plant Science, Vol. 168, No. 1, 2005, pp. 73-80.
http://dx.doi.org/10.1016/j.plantsci.2004.07.020
[43] B. Y. Liu, H. Wang, Z. G. Du, G. F. Li and H. C. Ye, “Metabolic Engineering of Artemisinin Biosynthesis in Artemisia annua L.,” Plant Cell Reports, Vol. 30, No. 5, 2011, pp. 689-694.
http://dx.doi.org/10.1007/s00299-010-0967-9
[44] D.-Y. Xie and Y. Hong, “Regeneration of Acacia mangium through Somatic Embryogenesis,” Plant Cell Reports, Vol. 20, No. 1, 2001, pp. 34-40.
http://dx.doi.org/10.1007/s002990000288
[45] C.-C. Lin, C.-S. Lin and W.-C. Chang, “In Vitro Flowering of Bambusa edulis and Subsequent Plantlet Survival,” Plant Cell, Tissue and Organ Culture, Vol. 2, No. 1, 2003, pp. 71-78. http://dx.doi.org/10.1023/A:1021281217589
[46] M. Dhandapani, D. Kim and S.-B. Hong, “Efficient Plant Regeneration via Somatic Embryogenesis and Organogenesis from the Explants of Catharanthus roseus,” In Vitro Cellular & Developmental Biology: Plant, Vol. 44, No. 1, 2008, pp. 18-25.
http://dx.doi.org/10.1007/s11627-007-9094-x
[47] J. Y. Song, S. F. Lu, Z. Z. Chen, R. Lourenco and V. L. Chian, “Genetic Transformation of Populus trichocarpa Genotype Nisqually-1: A Functional Genomic Tool for Woody Plants,” Plant Cell Physiology, Vol. 47, No. 11, 2006, pp. 1582-1589.
[48] D.-Y. Xie and Y. Hong, “Agrobacterium-Mediated Genetic Transformation of Acacia mangium,” Plant Cell Reports, Vol. 20, No. 10, 2002, pp. 917-922.
http://dx.doi.org/10.1007/s00299-001-0397-9
[49] C.-M. Feng, R. Qu, L.-L. Zhou and D.-X. Xie, “Shoot regeneration of dwarf dogwood (Cornus canadensis L.) and Morphological Characterization of the Regenerated Plants,” Plant Cell, Tissue and Organ Culture, Vol. 97, No. 1, 2009, pp. 27-37.
http://dx.doi.org/10.1007/s11240-009-9495-0
[50] D.-Y. Xie and R. A. Dixon, “Proanthocyanidin Biosynthesis—Still More Questions than Answers?” Phytochemistry, Vol. 66, No. 18, 2005, pp. 2127-2144.
http://dx.doi.org/10.1016/j.phytochem.2005.01.008
[51] R. A. Dixon, D.-Y. Xie and S. B. Sharma, “Proanthocyanidins—A Final Frontier in Flavonoid Research?” New Phytologist, Vol. 165, No. 1, 2005, pp. 9-28.
http://dx.doi.org/10.1111/j.1469-8137.2004.01217.x
[52] D.-Y. Xie, S. B. Sharma, N. L. Paiva, D. Ferreira and R. A. Dixon, “Role of Anthocyanidin Reductase, Encoded by BANYULS in Plant Flavonoid Biosynthesis,” Science, Vol. 299, No. 5605, 2003, pp. 396-399.
http://dx.doi.org/10.1126/science.1078540
[53] Kakegawa, K. Kakegawa, J. Suda, M. Sugiyama and A. Komamine, “Regulation of Anthocyanin Biosynthesis in Cell Suspension Cultures of Vitis in Relation to Cell Division,” Physiologia Plantarum, Vol. 94, No. 4, 1995, pp. 661-666.
http://dx.doi.org/10.1111/j.1399-3054.1995.tb00981.x
[54] B. Winkel-Shirley, “Flavonoid Biosynthesis. A Colorful Model for Genetics, Biochemistry, Cell Biology, and Biotechnology,” Plant Physiology, Vol. 126, No. 2, 2001, pp. 485-493. http://dx.doi.org/10.1104/pp.126.2.485
[55] K. H. Teoh, D. R. Polichuk, D. W. Reed and P. S. Covello, “Molecular Cloning of an Aldehyde Dehydrogenase Implicated in Artemisinin Biosynthesis in Artemisia annua,” Botany, Vol. 87, No. 6, 2009, pp. 635-642.
http://dx.doi.org/10.1139/B09-032

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.