Share This Article:

Facile Synthesis of Polypyrrole/Titanate Core-Shell Nanorods and Their Electrorheological Characteristics

Abstract Full-Text HTML Download Download as PDF (Size:1198KB) PP. 111-115
DOI: 10.4236/msa.2011.22015    4,477 Downloads   8,219 Views   Citations

ABSTRACT

In this work, polypyrrole (PPy)/titanate (TN) composite nanorods were successfully synthesized using cetyl trimethyl-ammonium bromide (CTAB) as a structure-directing agent by in situ chemical oxidative polymerization. The structural characterization indicated that the new composite rods were core (TN)-shell (PPy) nanostructure with the average diameter in the range of 250-300 nm. Further, this semiconducting composite can be used as a dispersed phase in silicone oil for a new electrorheological (ER) fluid, and its ER behavior was investigated under steady and oscillatory shear. It was found that the PPy/TN fluid showed typical ER characteristics under an external electric field.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

J. Zhang, Y. He and L. Ji, "Facile Synthesis of Polypyrrole/Titanate Core-Shell Nanorods and Their Electrorheological Characteristics," Materials Sciences and Applications, Vol. 2 No. 2, 2011, pp. 111-115. doi: 10.4236/msa.2011.22015.

References

[1] J. B. Ying and X. P. Zhao, “Titanate Nano-Whisker Electrorheological Fluid with High Suspended Stability and ER Activity,” Nanotechnology, Vol. 17, No. 1, 2006, pp. 192-196. doi:10.1088/0957-4484/17/1/031
[2] Y. D. Liu, F. F. Fang and H. J. Choi, “Silica Nanoparticle Decorated Conducting Polyaniline Fibers and Their Electrorheology,” Materials Letters, Vol. 64, No. 2, 2010, pp. 154-156. doi:10.1016/j.matlet.2009.10.031
[3] Y. Cheng, K. Wu, F. Liu, J. Guo, X. Liu, G. Xu and P. Cui, “Facile Approach to Large-Scale Synthesis of 1D Calcium and Titanium Precipitate (CTP) with High Electrorheological Activity,” ACS Applied Materials & Interfaces, Vol. 2, No. 3, 2010, pp. 621-625. doi:10.1021/am900841m
[4] H. Block and J. P. Kelly, “Electro-Rheology,” Journal of Physics D: Applied Physics, Vol. 21, No. 12, 1998, pp. 1661-1667. doi:10.1088/0022-3727/21/12/001
[5] T. Hao, “Electrorheological Fluids,” Advanced Materials, Vol. 13, No. 24, 2001, pp. 1847-1857. doi:10.1002/1521-4095(200112)
[6] Q. Cheng, Y. He, V. Pavlinek, C. Li and P. Saha, “Surfactant-Assisted Polypyrrole/Titanate Composite Nanofibers: Morphology, Structure and Electrical Properties,” Synthetic Metals, Vol. 158, No. 21-24, 2008, pp. 953-957. doi:10.1016/j.synthmet.2008.06.022
[7] D. V. Bavykin, J. M. Friedrich and F. C. Walsh, “Protonated Titanates and TiO2 Nanostructured Materials: Synthesis, Properties, and Applications,” Advanced Materials, Vol. 18, No. 21, 2006, pp. 2807-2824. doi:10.1002/adma.200502696
[8] Y. Lan, X. P. Gao, H. Y. Zhu, Z. F. Zheng, T. Y. Yan, F. Wu, S. P. Ringer and D. Y. Song, “Titanate Nanotubes and Nanorods Prepared from Rutile Powder,” Advanced Functional Materials, Vol. 15, No. 8, 2005, pp. 1310-1318. doi:10.1002/adfm.200400353
[9] G. I. Mathys and V. T. Truong, “Spectroscopic Study of Thermo-Oxidative Degradation of Polypyrrole Powder by FT-IR,” Synthetic Metals, Vol. 89, No. 2, 1997, pp. 103-109. doi:10.1016/S0379-6779(98)80122-7
[10] O. Harizanov, A. Harizanova and T. Ivanova, “Formation and Characterization of Sol-Gel Barium Titanate,” Materials Science and Engineering: B, Vol. 106, No. 2, 2004, pp. 191-195. doi:10.1016/j.mseb.2003.09.014
[11] Y. T. Lim, J. H. Park and O. O. Park, “Improved Electrorheological Effect in Polyaniline Nanocomposite Suspensions,” Journal of Colloid and Interface Science, Vol. 245, No. 1, 2002, pp. 198-203. doi:10.1006/jcis.2001.7983
[12] H.-J. Choi, M.-S. Cho and K. To, “Electrorheological and Dielectric Characteristics of Semiconductive Polyaniline-Silicone Oil Suspensions,” Physica A: Statistical Mechanics and Its Applications, Vol. 254, No. 1-2, 1998, pp. 272-279. doi:10.1016/S0378-4371(98)00005-3
[13] Q. Cheng, V. Pavlinek, A. Lengalova, C. Li, T. Belza and P. Saha, “Electrorheological Properties of New Mesoporous Material with Conducting Polypyrrole in Mesoporous silica,” Microporous and Mesoporous Materials, Vol. 94, No. 1-3, 2006, pp. 193-199. doi:10.1016/j.micromeso.2006.03.039
[14] S.-G. Kim, J.-W. Kim, M.-S. Cho, H.-J. Choi and M.-S. Jhon, “Viscoelastic Characterization of Semiconducting Dodecylbenzenesulfonic Acid Doped Polyaniline Electrorheological Suspensions,” Journal of Applied Polymer Science, Vol. 79, No. 1, 2001, pp. 108-114. doi:10.1002/1097-4628(20010103)
[15] M. S. Cho, H. J. Choi and W. S. Ahn, “Enhanced Electrorheology of Conducting Polyaniline Confined in MCM-41 Channels,” Langmuir, Vol. 20, No. 1, 2004, pp. 202-207. doi:10.1021/la035051z

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.