Share This Article:

Spatial and Temporal Variation of Stable Isotopes in Precipitation across Costa Rica: An Analysis of Historic GNIP Records

Abstract Full-Text HTML XML Download Download as PDF (Size:2612KB) PP. 226-240
DOI: 10.4236/ojmh.2013.34027    4,109 Downloads   7,006 Views   Citations

ABSTRACT

The location of Costa Rica on the Central American Isthmus creates unique microclimate systems that receive moisture inputs directly from the Caribbean Sea and the Pacific Ocean. In Costa Rica, stable isotope monitoring was conducted by the International Atomic Energy Agency and the World Meteorological Association as part of the worldwide effort entitled Global Network of Isotopes in Precipitation. Sampling campaigns were mainly comprised of monthly-integrated samples during intermittent years from 1990 to 2005. The main goal of this study was to determine spatial and temporal isotopic variations of meteoric waters in Costa Rica using historic records. Samples were grouped in four main regions: Nicoya Peninsula (d2H = 6.65d18O0.13; r2 = 0.86); Pacific Coast (d2H = 7.60d18O + 7.95; r2 = 0.99); Caribbean Slope (d2H = 6.97d18O + 4.97; r2 = 0.97); and Central Valley (d2H = 7.94d18O + 10.38; r2 = 0.98). The water meteoric line for Costa Rica can be defined as d2H = 7.61d18O + 7.40 (r2 = 0.98). The regression of precipitation amount and annual arithmetic means yields a slope of ﹣1.6‰ d18O per 100 mm of rain (r2 = 0.57) which corresponds with a temperature effect of ﹣0.37‰ d18O/°C. A strong correlation (r2 = 0.77) of ﹣2.0‰ d18O per km of elevation was found. Samples within the Nicoya Peninsula and Caribbean lowlands appear to be dominated by evaporation enrichment as shown in d-excess interpolation, especially during the dry months, likely resulting from small precipitation amounts. In the inter-mountainous region of the Central Valley and Pacific slope, complex moisture recycling processes may dominate isotopic variations. Generally, isotopic values tend to be more depleted as the rainy season progresses over the year. Air parcel back trajectories indicate that enriched isotopic compositions both in Turrialba and Monteverde are related to central Caribbean parental moisture and low rainfall intensities. Depleted events appear to be related to high rainfall amounts despite the parental origin of the moisture.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

R. Sánchez-Murillo, G. Esquivel-Hernández, K. Welsh, E. Brooks, J. Boll, R. Alfaro-Solís and J. Valdés-González, "Spatial and Temporal Variation of Stable Isotopes in Precipitation across Costa Rica: An Analysis of Historic GNIP Records," Open Journal of Modern Hydrology, Vol. 3 No. 4, 2013, pp. 226-240. doi: 10.4236/ojmh.2013.34027.

References

[1] P. Kabat, R. E. Schulze, M. E. Hellmuth and J. A. Veraart, “Coping with Impacts of Climate Variability and Climate Change in Water Management: A Scoping Paper,” DWC-Report No. DWCSSO-01 International Secretariat of the Dialogue on Water and Climate, Wageningen, 2003.
[2] R. K. Colwell, G. Brehm, C. L. Cardelús, A. C. Gilman and J. T. Longino, “Global Warming, Elevational Range Shifts, and Lowland Biotic Attrition in the Wet Tropics,” Science, Vol. 322, No. 5899, 2008, pp. 258-261. http://dx.doi.org/10.1126/science.1162547
[3] S. R. Loarie, P. P. Duffy, H. Hamilton, G. P. Asner, C. B. Field and D. D. Ackerly, “The Velocity of Climate Change,” Nature, Vol. 462, No. 7276, 2009, pp. 1052-1055. http://dx.doi.org/10.1038/nature08649
[4] J. J. Tewksbury, R. B. Huey and C. A. Deutsch, “Putting the Heat on Tropical Animals,” Science, Vol. 320, No. 5881, 2008, pp. 1296-1297. http://dx.doi.org/10.1126/science.1159328
[5] Y. P. Zhou, K. M. Xu, Y. C. Sud and A. K. Betts, “Recent Trends of the Tropical Hydrological Cycle Inferred from Global Precipitation Climatology Project and International Satellite Cloud Climatology Project Data,” Journal of Geophysical Research, Vol. 116, No. D6, 2011, Article ID: D09101. http://dx.doi.org/10.1029/2010JD015197
[6] V. Magana, J. A. Amador and S. Medina, “The Midsummer Drought over Mexico and Central America,” Journal of Climate, Vol. 12, No. 6, 1999, pp. 1577-1588. http://dx.doi.org/10.1175/1520-0442(1999)012<1577:TMDOMA>2.0.CO;2
[7] G. Bowen, “Statistical and Geostatistical Mapping of Precipitation Water Isotope Ratios,” In: J. B. West, et al., Eds., Isoscapes: Understanding Movement, Pattern, and Process on Earth through Isotope Mapping, Springer Science, New York, 2010, pp. 139-160. http://dx.doi.org/10.1007/978-90-481-3354-3_7
[8] L. J. Araguás-Araguás, K. O. Froehlich and K. Rozanski, “Stable Isotope Composition of Precipitation over Southeast Asia,” Journal of Geophysical Research, Vol. 103, No. D22, 1998, pp. 28721-28742. http://dx.doi.org/10.1029/98JD02582
[9] K. M. Cobb, J. F. Adkins, J. W. Partin and B. Clark, “Regional-Scale Climate Influences on Temporal Variation of Rainwater and Cave Dripwater Oxygen Isotopes in Northern Borneo,” Earth and Planetary Science Letters, Vol. 263, No. 3-4, 2007, pp. 207-220. http://dx.doi.org/10.1016/j.epsl.2007.08.024
[10] Y. Ishizaki, K. Yoshimura, S. Kanae, M. Kimoto, N. Kurita and T. Oki, “Interannual Variability of H218O in Precipitation over the Asian Monsoon Region,” Journal of Geophysical Research, Vol. 117, No. D16, 2012, Article ID: D16308. http://dx.doi.org/10.1029/2011JD015890
[11] K. R. Johnson and B. L. Ingram, “Spatial and Temporal Variability in the Stable Isotope Systematics of Modern Precipitation in China: Implications for Paleoclimate Reconstructions,” Earth and Planetary Science Letters, Vol. 220, No. 3-4, 2004, pp. 365-377. http://dx.doi.org/10.1016/S0012-821X(04)00036-6
[12] M. Lachniet, “Sea Surface Temperature Control on the Stable Isotopic Composition of Rainfall in Panama,” Geophysical Research Letters, Vol. 36, No. 3, 2009, Article ID: L03701. http://dx.doi.org/10.1029/2008GL036625
[13] M. Lachniet and W. Patterson, “Oxygen Isotope Values of Precipitation and Surface Waters in Northern Central America (Belize and Guatemala) Are Dominated by Temperature and Amount Effects,” Earth and Planetary Science Letters, Vol. 284, No. 3, 2009, pp. 435-446. http://dx.doi.org/10.1016/j.epsl.2009.05.010
[14] M. Vuille, R. S. Bradley and F. Keimig, “Interannual Climate Variability in the Central Andes and Its Relation to Tropical Pacific and Atlantic Forcing,” Water Resources Research, Vol. 105, No. D10, 2000, pp. 12447-12460. http://dx.doi.org/10.1029/2000JD900134
[15] M. Vuille, R. S. Bradley and F. Keimig, “Climatic Variability in the Andes of Ecuador and Its Relation to Tropical Pacific and Atlantic Sea Surface Temperature Anomalies,” Journal of Climate, Vol. 13, No. 14, 2000, pp. 2520-2535. http://dx.doi.org/10.1175/1520-0442(2000)013<2520:CVITAO>2.0.CO;2
[16] M. Vuille, R. S. Bradley, R. Healy, M. Werner, D. R. Hardy, L. G. Thompson and F. Keimig, “Modeling d18O in Precipitation over the Tropical Americas 2: Simulation of the Stable Isotope Signal in Andean Ice Cores,” Journal of Geophysical Research, Vol. 108, No. D6, 2003, p. 4175. http://dx.doi.org/10.1029/2001JD002039
[17] K. Ichiyanagi and M. D. Yamanaka, “Interannual Variation of Stable Isotopes in Precipitation at Bangkok in Response to El Nino Southern Oscillation,” Hydrological Processes, Vol. 19, No. 17, 2005, pp. 3413-3423. http://dx.doi.org/10.1002/hyp.5978
[18] H. O. Panarello and C. Dapena, “Large Scale Meteorological Phenomena, ENSO and ITCZ, Define the Paraná River Isotope Composition,” Journal of Hydrology, Vol. 365, No. 1-2, 2009, pp. 105-112. http://dx.doi.org/10.1016/j.jhydrol.2008.11.026
[19] M. Vuille and M. Werner, “Stable Isotopes in Precipitation Recording South American Summer Monsoon and ENSO Variability: Observations and Model Results,” Climate Dynamics, Vol. 25, No. 4, 2005, pp. 401-413. http://dx.doi.org/10.1007/s00382-005-0049-9
[20] P. K. Aggarwal, O. A. Alduchov, K. O. Froehlich, L. J. Araguas-Araguas, N. C. Sturchio and N. Kurita, “Stable Isotopes in Global Precipitation: A Unified Interpretation Based on Atmospheric Moisture Residence Time,” Geophysical Research Letters, Vol. 39, No. 11, 2012, Article ID: L11705. http://dx.doi.org/10.1029/2012GL051937
[21] L. J. Araguás-Araguás, K. O. Froehlich and K. Rozanski, “Deuterium and Oxygen-18 Isotope Composition of Precipitation and Atmospheric Moisture,” Hydrological Processes, Vol. 14, No. 8, 2000, pp. 1341-1355. http://dx.doi.org/10.1002/1099-1085(20000615)14:8<1341::AID-HYP983>3.0.CO;2-Z
[22] G. Bowen, “Spatial Analysis of the Intra-Annual Variation of Precipitation Isotope Ratios and Its Climatological Corollaries,” Journal of Geophysical Research, Vol. 113, No. D5, 2008, Article ID: D05113. http://dx.doi.org/10.1029/2007JD009295
[23] W. Dansgaard, “Stable Isotopes in Precipitation,” Tellus, Vol. 16, No. 4, 1964, pp. 436-468. http://dx.doi.org/10.1111/j.2153-3490.1964.tb00181.x
[24] K. Rozanski, L. J. Araguas-Araguas and R. Gonantini, “Isotopic Patterns in Modern Global Precipitation,” In: P. K. Swart, K. C. Lohmann, J. McKenzie and S. Savin, Eds., Climate Change in Continental Isotopic Records, American Geophysical Union, Washington DC, 1993, pp. 1-36.
[25] L. I. Wassenaar, P. Athanasopoulos and M. J. Hendry, “Isotope Hydrology of Precipitation, Surface and Ground Waters in the Okanagan Valley, British Columbia, Canada,” Hydrology, Vol. 411, No. 1, 2011, pp. 37-48. http://dx.doi.org/10.1016/j.jhydrol.2011.09.032
[26] G. Bowen and J. Revenaugh, “Interpolating the Isotopic Composition of Modern Meteoric Precipitation,” Water Resources Research, Vol. 39, No. 10, 2003, p. 1299. http://dx.doi.org/10.1029/2003WR002086
[27] M. Lachniet and W. Patterson, “Stable Isotope Values of Costa Rican Surface Waters,” Journal of Hydrology, Vol. 260, No. 1-4, 2002, pp. 135-150. http://dx.doi.org/10.1016/S0022-1694(01)00603-5
[28] G. J. Bowen, J. B. West and J. Hoogewerff, “Isoscapes: Isotope Mapping and Its Applications,” Geochemical Exploration, Vol. 102, No. 3, 2009, pp. 5-7. http://dx.doi.org/10.1016/j.gexplo.2009.05.001
[29] V. Barras and I. Simmonds, “Observation and Modeling of Stable Water Isotopes as Diagnostics of Rainfall Dynamics over Southeastern Australia,” Journal of Geophysical Research, Vol. 114, No. D23, 2009, pp. 1-17. http://dx.doi.org/10.1029/2009JD012132
[30] H. Celle-Jeanton, R. Gonfiantini, Y. Travi and B. Sol, “Oxygen-18 Variations of Rainwater during Precipitation: Application of a Rayleigh Model to Selected Rainfalls in Southern France,” Journal of Hydrology, Vol. 289, No. 1-4, 2004, pp. 165-177. http://dx.doi.org/10.1016/j.jhydrol.2003.11.017
[31] T. B. Coplen, P. J. Neiman, A. B. White, J. M. Landwehr, F. M. Ralph and M. D. Dettinger, “Extreme Changes in Stable Hydrogen Isotopes and Precipitation Characteristics in a Landfalling Pacific Storm,” Geophysical Research Letters, Vol. 35, No. 21, 2008, Article ID: L21808. http://dx.doi.org/10.1029/2008GL035481
[32] N. C. Munksgaard, C. M. Wurster, A. Bass and M. I. Bird, “Extreme Short-Term Stable Isotope Variability Revealed by Continuous Rainwater Analysis,” Hydrological Processes, Vol. 26, No. 23, 2012, pp. 3630-3634. http://dx.doi.org/10.1002/hyp.9505
[33] J. Reynolds-Vargas and J. Fraile, “Use of Stable Isotopes in Precipitation to Determine Recharge Areas within the Barva Aquifer, Costa Rica,” Latinoamerican Stable Isotopes Studies, International Atomic Energy Agency, Viena, 2006, pp. 83-96.
[34] P. Waylen, C. N. Caviedes and M. F. Quesada, “Interannual Variability of Monthly Precipitation in Costa Rica,” Journal of Climate, Vol. 9, No. 10, 1996, pp. 2506-2613. http://dx.doi.org/10.1175/1520-0442(1996)009<2606:IVOMPI>2.0.CO;2
[35] A. J. Guswa, A. Rhodes and S. E. Newell, “Importance of Orographic Precipitation to the Water Resources of Monteverde, Costa Rica,” Advances in Water Resources, Vol. 30, No. 10, 2007, pp. 2098-2112. http://dx.doi.org/10.1016/j.advwatres.2006.07.008
[36] GNIP, “Global Network of Isotopes in Precipitation,” 2012. http://wwwnaweb.iaea.org/napc/ih/IHS_resources_gnip.html
[37] Instituto Tecnológico de Costa Rica (ITEC), “Atlas de Costa Rica. Escuela de Ingeniería Forestal. Cartago, Costa Rica,” Digital Atlas, ITEC, Cartago, Costa Rica, 2008.
[38] R. R. Draxler and G. D. Rolph, “HYSPLIT-Hybrid Single Particle Lagrangian Integrated Trajectory Model,” 2013. http://ready.arl.noaa.gov/HYSPLIT.php
[39] H. Craig, “Isotopic Variations in Meteoric Waters,” Science, Vol. 133, No. 3465, 1961, pp. 1702-1703. http://dx.doi.org/10.1126/science.133.3465.1702
[40] C. Leibundgut, P. Maloszewski and C. Kulls, “Tracers in hydrology,” Wiley-Blackwell, Oxford, 2009.
[41] R. Gonfiantini, M. A. Roche, J. C. Olivry, J. C. Fontes and G. M. Zuppi, “The Altitude Effect on the Isotopic Composition of Tropical Rains,” Chemical Geology, Vol. 181, No. 1, 2001, pp. 147-167. http://dx.doi.org/10.1016/S0009-2541(01)00279-0
[42] M. A. Scholl, J. B. Shanley, J. P. Zegarra and T. B. Coplen, “The Stable Isotope Amount Effect: New Insights from NEXRAD Echo Tops, Luquillo Mountains, Puerto Rico,” Water Resources Research, Vol. 45, No. 12, 2009, Article ID: W12407. http://dx.doi.org/10.1029/2008WR007515
[43] A. L. Rhodes, A. J. Guswa and S. E. Newell, “Seasonal Variation in the Stable Isotopic Composition of Precipitation in the Tropical Montane Forests of Monteverde, Costa Rica,” Water Resources Research, Vol. 42, 2006, Article ID: W11402. http://dx.doi.org/10.1029/2005WR004535
[44] MINAET-IMN, “Mejoramiento de las Capacidades Nacionales para la Evaluación de la Vulnerabilidad y Adaptación del Sistema híDrico al Cambio climático en Costa Rica, Como Mecanismo para Disminuir el Riesgo al Cambio climático y Aumentar el índice de Desarrollo Humano,” In: J. A. Retana, Eds., Ministerio de Ambiente, Energía y Telecomunicaciones, Instituto Meteorológico Nacional San José, Costa Rica, 2012, 46 p.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.