Substitution of Nitrite Reductase of Thermosynechococcus elongatus BP-1 by the Homologous Gene of Phormidium laminosum

Abstract

Even though the nitrate assimilation operon has been extensively studied in Phormidium laminosum, some aspects still remain unclear. The genetic manipulation of this cyanobacterium is problematic that hinders the elucidation of further aspects of nitrogen metabolism. To circumvent this, Thermosynechococcus elongatus BP-1 was selected as a surrogate host and its nirA gene was substituted by the homologous gene of P. laminosum. This process, based on Long Flanking Homology Polymerase Chain Reaction and the natural competence of T. elongatus BP-1, required an intermediate T. elongatus BP-1 ΔnirA::kat mutant, which carries a gene encoding a thermostable kanamycin nucleotidyl transferase in place of nirA_Te. In the presence of nirA_Pl, nirA defective mutants of T. elongatus BP-1 recovered the ability to grow with nitrate as the sole nitrogen source, and showed a phenotype similar to that observed in wild-type cells. The procedure could be useful to substitute other genes from T. elongatus BP-1 with the homologues from P. laminosum in order to study this particular operon. Furthermore, it may be used as a general tool to explore phenotypic changes due to the exchange of a single gene between cyanobacteria.

 

Share and Cite:

M. Buxens, J. Serra and M. Llama, "Substitution of Nitrite Reductase of Thermosynechococcus elongatus BP-1 by the Homologous Gene of Phormidium laminosum," Advances in Microbiology, Vol. 3 No. 6A, 2013, pp. 69-79. doi: 10.4236/aim.2013.36A009.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] T. Omata, X. Andriesse and A. Hirano, “Identification and Characterization of a Gene Cluster Involved in Nitrate Transport in the Cyanobacterium Synechococcus sp. PCC 7942,” Molecular and General Genetics, Vol. 236, No. 2-3, 1993, pp. 193-202.
http://dx.doi.org/10.1007/BF00277112
[2] I. Luque, E. Flores and A. Herrero, “Molecular Mechanism for the Operation of Nitrogen Control in Cyanobacteria,” EMBO Journal, Vol. 13, No. 12, 1994, pp. 2862-2869.
[3] S. Maeda and T. Omata, “Nitrite Transport Activity of the ABC-Type Cyanate Transporter of the Cyanobacterium Synechococcus elongatus,” Journal of Bacteriology, Vol. 191, No. 10, 2009, pp. 3265-3272.
http://dx.doi.org/10.1128/JB.00013-09
[4] E. Flores and A. Herrero, “Nitrogen Assimilation and Nitrogen Control in Cyanobacteria,” Biochemical Society Transactions, Vol. 33, 2005, pp. 164-167.
http://dx.doi.org/10.1042/BST0330164
[5] E. Flores, J. E. Frías, L. M. Rubio and A. Herrero, “Photosynthetic Nitrate Assimilation in Cyanobacteria,” Photosynthesis Research, Vol. 83, No. 2, 2005, pp. 117-133.
[6] M. I. MuroPastor, J. C. Reyes and F. J. Florencio, “Ammonium Assimilation in Cyanobacteria,” Photosynthesis Research, Vol. 83, No. 2, 2005, pp. 135-150.
http://dx.doi.org/10.1007/s11120-004-2082-7
[7] J. M. Arizmendi and J. L. Serra, “Purification and Some Properties of the Nitrite Reductase from the Cyanobacterium Phormidium laminosum,” Biochimica et Biophysica Acta, Vol. 1040, No. 2, 1990, pp. 237-244.
http://dx.doi.org/10.1016/0167-4838(90)90082-Q
[8] D. Nagore, M. Llarena, M. J. Llama and J. L. Serra, “Characterization of the N-Terminal Domain of NrtC, the ATP-Binding Subunit of ABC-Type Nitrate Transporter of the Cyanobacterium Phormidium laminosum,” Biochimica et Biophysica Acta, Vol. 1623, No. 2-3, 2003, pp. 143-153. http://dx.doi.org/10.1016/j.bbagen.2003.09.001
[9] M. Llarena, M. J. Llama and J. L. Serra, “Purification and Properties of NrtC and NrtD, the ATP-Binding Subunits of the ABC Nitrate/Nitrite Transporter of Phormidium laminosum,” Biochimica et Biophysica Acta, Vol. 1760, No. 12, 2006, pp. 1819-1826.
http://dx.doi.org/10.1016/j.bbagen.2006.08.006
[10] D. Nagore, B. Sanz, J. Soria, M. Llarena, M. J. Llama, J. J. Calvete and J. L. Serra, “The Nitrate/Nitrite ABC Transporter of Phormidium laminosum: Phosphorylation State of NrtA Is Not Involved in Its Substrate Binding Activity,” Biochimica et Biophysica Acta, Vol. 176, No. 2, 2006, pp. 172-181.
http://dx.doi.org/10.1016/j.bbagen.2005.12.011
[11] F. Merchán, K. L Kindle, M. J. Llama, J. L. Serra and E. Fernández, “Cloning and Sequencing of the Nitrate Transport System from the Thermophilic Filamentous Cyanobacterium Phormidium laminosum: Comparative Analysis with the Homologous System from Synechococcus sp. PCC 7942,” Plant Molecular Biology, Vol. 28, No. 4, 1995, pp. 759-766.
http://dx.doi.org/10.1007/BF00021199
[12] S. Naithani, J. M. Hou and P. R. Chitnis, “Targeted Inactivation of the psaK1, psaK2 and psaK3 Genes Encoding Subunits of Photosystem I in the Cyanobacterium Synechocystis sp. PCC 6803,” Photosynthesis Research, Vol. 63, No. 3, 2000, pp. 225-236.
http://dx.doi.org/10.1023/A:1006463932538
[13] G. Taroncher-Oldenburg and G. Stephanopoulos, “Targeted, PCR-Based Gene Disruption in Cyanobacteria: Inactivation of the Polyhydroxyalkanoic Acid Synthase Genes in Synechocystis sp. PCC6803,” Applied and Microbial Biotechnology, Vol. 54, No. 5, 2000, pp. 677-680.
http://dx.doi.org/10.1007/s002530000450
[14] H. Katoh, S. Itoh, J. R. Shen and M. Ikeuchi, “Functional Analysis of psbV and a Novel c-Type Cytochrome Gene psbV2 of the Thermophilic Cyanobacterium Thermo-synechococcus elongatus strain BP-1,” Plant and Cell Physiology, Vol. 46, No. 6, 2001, pp. 599-607.
http://dx.doi.org/10.1093/pcp/pce074
[15] G. I. Kufryk, M. Sachet, G. Schmetterer and F. J. Vermaas Wim, “Transformation of the Cyanobacterium Synechocystis sp. PCC 6803 as a Tool for Genetic Mapping: Optimization of Efficiency,” FEMS Microbiology Letters, Vol. 26, No. 2, 2002, pp. 215-219.
http://dx.doi.org/10.1111/j.1574-6968.2002.tb11012.x
[16] S. V. Shestahov, “Gene-Targeted and Site-Directed Mutagenesis of Photosynthesis Genes in Cyanobacteria,” Photosynthesis Research, Vol. 73, No. 1-3, 2002, pp. 279-284.
http://dx.doi.org/10.1023/A:1020432004692
[17] X. Zang, B. Liu, S. Liu, K. Arunakamura and X. Zhang, “Optimal Conditions for Transformation of Synechocystis sp. PCC 6803,” Journal of Microbiology, Vol. 45, No. 3, 2007, pp. 241-245.
[18] T. Yamaoka, K. Satoh and S. Katoh, “Photosynthetic Activities of a Thermophilic Blue-Green Alga,” Plant and Cell Physiology, Vol. 19, No. 6, 1978, pp. 943-954.
[19] Y. Nakamura, T. Kaneko, S. Sato, M. Ikeuchi, H. Katoh, S. Sasamoto, A. Watanabe, M. Iriguchi, K. Kawashima, T. Kimura, Y. Kishida, C. Kiyokawa, M. Kohara, A. Matsumoto, N. Nakazaki, S. Shimpo, M. Sugimoto, C. Takeuchi, M. Tamada and S. Tabata, “Complete Genome Structure of the Thermophilic Cyanobacterium Thermo-synechococcus elongatus BP-1,” DNA Research, Vol. 9, No. 4, 2002, pp. 123-130.
http://dx.doi.org/10.1093/dnares/9.4.123
[20] K. Onai, M. Morishita, Y. Kaneko, S. Tabata and M. Ishiura, “Natural Transformation of the Thermophilic Cyanobacterium Thermosynechococcus elongatus BP-1: a Simple and Efficient Method for Gene Transfer,” Molecular Genetics and Genomics, Vol. 271, No. 1, 2004, pp. 50-59. http://dx.doi.org/10.1007/s00438-003-0953-9
[21] M. Iwai, H. Katoh, M. Katayama and M. Ikeuchi, “Improved Genetic Transformation of the Thermophilic Cyanobacterium Thermosynechococcus elongatus BP-1,” Plant and Cell Physiology, Vol. 45, No. 2, 2004, pp. 171-175. http://dx.doi.org/10.1093/pcp/pch015
[22] M. G. Lorenz and W. Wackernagel, “Bacterial Gene Transfer by Natural Genetic Transformation in the Environment,” Microbiology Reviews, Vol. 58, No. 3, 1994, pp. 563-602.
[23] R. D. Lunsford, “Streptococcal Transformation: Essential Features and Applications of a Natural Gene Exchange System,” Plasmid, Vol. 39, No. 1, 1998, pp. 10-20.
http://dx.doi.org/10.1006/plas.1997.1323
[24] C. M Thomas and K. M. Nielsen, “Mechanisms of, and Barriers to, Horizontal Gene Transfer between Bacteria,” Nature Reviews in Microbiology, Vol. 3, No. 9, 2005, pp. 711-721. http://dx.doi.org/10.1038/nrmicro1234
[25] O. Johnsborg and L. S. Havarstein, “Regulation of Natural Genetic Transformation and Acquisition of Transforming DNA in Streptococcus pneumonia,” FEMS Microbiology Reviews, Vol. 33, No. 3, 2009, pp. 627-642.
http://dx.doi.org/10.1111/j.1574-6976.2009.00167.x
[26] B. Averhoff and A. Friedrich, “Type IV Pili-Related Natural Transformation System: DNA Transport in Mesophilic and Thermophilic Bacteria,” Archives in Microbiology, Vol. 180, No. 6, 2003, pp. 385-393.
http://dx.doi.org/10.1007/s00203-003-0616-6
[27] B. Averhoff, “DNA Transport and Natural Transformation in Mesophilic and Thermophilic Bacteria,” Journal of Bioenergetics and Biomembranes, Vol. 36, No. 1, 2004, pp. 25-33.
http://dx.doi.org/10.1023/B:JOBB.0000019595.66733.fa
[28] I. Chen, P. J. Christie and D. Dubnau, “The Ins and Outs of DNA Transfer in Bacteria,” Science, Vol. 310, No. 5753, 2005, pp. 1456-1460.
http://dx.doi.org/10.1126/science.1114021
[29] H. L. Hamilton and J. P. Dillard, “Natural Trans-Formation of Neisseria gonorrhoeae: From DNA Donation to Homologous Recombination,” Molecular Microbiology, Vol. 59, No. 2, 2006, pp. 376-385.
http://dx.doi.org/10.1111/j.1365-2958.2005.04964.x
[30] O. Johnsborg, E. Vegard and L. S. Havarstein, “Natural Genetic Transformation: Prevalence, Mechanisms and Function,” Research in Microbiology, Vol. 158, No. 10, 2007, pp. 767-778.
http://dx.doi.org/10.1016/j.resmic.2007.09.004
[31] A. Urban, S. Neukirchen and K.-E. Jaeger, “A Rapid and Efficient Method for Site-Directed Mutagenesis Using One-Step Overlap Extension PCR,” Nucleic Acids Research, Vol. 25, No. 11, 1997, pp. 2227-2228.
http://dx.doi.org/10.1093/nar/25.11.2227
[32] R. Kong and X. Xu, “Tree-Piece-Ligation PCR and Application in Disruption of Chlorophyll Synthesis Genes in Synechocystis sp. PCC 6803,” Current Microbiology, Vol. 44, No. 4, 2002, pp. 241-245.
http://dx.doi.org/10.1007/s00284-001-0032-6
[33] H. Kuwayama, S. Obara, T. Mario, M. Katoh, H. Urushihara and Y. Tanaka, “PCR-Mediated Generation of a Gene Disruption Construct without the Use of DNA Ligase and Plasmid Vectors,” Nucleic Acid Research, Vol. 30, No. 2, 2002, Article ID: e2.
http://dx.doi.org/10.1093/nar/30.2.e2
[34] J. Wendland, “PCR-Based Methods Facilitates Targeted Gene Manipulations and Cloning Procedures,” Current Genetics, Vol. 44, No. 3, 2003, pp. 115-123.
http://dx.doi.org/10.1007/s00294-003-0436-x
[35] A. Baudin, K. O. Ozier, A. Denouel, F. Lacroute and C. Cullin, “A Simple Efficient Method for Direct Gene Deletion in Saccharomyces cerevisiae,” Nucleic Acids Research, Vol. 21, No. 14, 1993, pp. 3329-3330.
http://dx.doi.org/10.1093/nar/21.14.3329
[36] A. Wach, A. Brachat, R. Poehlmann and P. Philippsen, “New Heterologous Modules for Classical or PCR-Based Gene Disruptions in Saccharomyces cerevisiae,” Yeast, Vol. 10, No. 13, 1994, pp. 1793-1808.
http://dx.doi.org/10.1002/yea.320101310
[37] M. C. Lorenz, R. S. Muir, E. Lim, J. McElver, S. C. Weber and J. Heitman, “Gene Disruption with PCR Products in Saccharomyces cerevisiae,” Gene, Vol. 158, No. 1, 1995, pp. 113-117.
http://dx.doi.org/10.1016/0378-1119(95)00144-U
[38] P. Manivasakam, S. C. Weber, J. McElver and R. H. Schiestl, “Micro-Homology Mediated PCR Targeting in Saccharomyces cerevisiae,” Nucleic Acids Research, Vol. 23, No. 14, 1995, pp. 2799-2800.
http://dx.doi.org/10.1093/nar/23.14.2799
[39] A. Wach, “PCR-Synthesis of Marker Cassettes with Long Flanking Homology Regions for Gene Disruptions in S. cerevisiae,” Yeast, Vol. 12, No. 3, 1996, pp. 259-265.
http://dx.doi.org/10.1002/(SICI)1097-0061(19960315)12:3<259::AID-YEA901>3.0.CO;2-C
[40] J. M. Koomey and S. Falkow, “Cloning of the recA Gene of Neisseria gonorrhoeae and Construction of Gonococcal recA Mutants,” Journal of Bacteriology, Vol. 169, No. 2, 1987, pp. 790-795.
[41] A. Kowalczykowski and A. Eggelston, “Homologous Pairing and DNA Strand-Exchange Proteins,” Annual Review of Biochemistry, Vol. 63, 1994, pp. 991-1043.
http://dx.doi.org/10.1146/annurev.bi.63.070194.005015
[42] D. Kidane and P. L. Graumann, “Intracellular Protein and DNA Dynamics in Competent Bacillus subtilis Cells,” Cell, Vol. 122, No. 1, 2005, pp. 73-84.
http://dx.doi.org/10.1016/j.cell.2005.04.036
[43] R. Y. Stanier, R. Kunisawa, M. Mandel and G. Cohen-Bazire, “Purification and Properties of Unicellular Blue-Green Algae (Order Chroococcales),” Bacteriology Reviews, Vol. 35, No. 2, 1971, pp. 171-205.
[44] R. W. Castenholz, “Laboratory Culture of Thermophilic Cyanophytes,” Schweizerische Zeitschrift fur Hydrologie, Vol. 32, No. 2, 1970, pp. 538-551.
[45] J. A. Smoker and S. R. Barum, “Rapid Small-Scale DNA Isolation from Filamentous Cyanobacteria,” FEMS Microbiology Letters, Vol. 56, No. 1, 1988, pp. 119-122.
http://dx.doi.org/10.1111/j.1574-6968.1988.tb03161.x
[46] H. Liao, T. Mckenzie and R. Hageman, “Isolation of a Thermostable Enzyme Variant by Cloning and Selection in a Thermophile,” Proceedings of the National Academy of Sciences USA, Vol. 83, 1986, pp. 576-580.
http://dx.doi.org/10.1073/pnas.83.3.576
[47] H. O. Smith, M. L. Gwinn and S. L. Salzberg, “DNA Uptake Signal Sequences in Naturally Transformable Bacteria,” Research in Microbiology, Vol. 150, No. 9-10, 1999, pp. 603-616.
http://dx.doi.org/10.1016/S0923-2508(99)00130-8
[48] T. Blomqvist, H. Steinmoen and L. S. Havarstein, “Natural Genetic Transformation: A Novel Tool for Efficient Genetic Engineering of the Dairy Bacterium Streptococcus thermophilus,” Applied and Environmental Microbiology, Vol. 72, No. 10, 2006, pp. 6751-6756.
http://dx.doi.org/10.1128/AEM.01156-06
[49] M. L. Montesinos, A. M. Muro-Pastor, A. Herrero and E. Flores, “Ammonium/Methylammonium Permeases of a Cyanobacterium. Identification and Analysis of Three Nitrogen-Regulated amt Genes in Synechocystis sp. PCC 6803,” Journal of Biological Chemistry, Vol. 273, No. 47, 1998, pp. 31463-31470.
http://dx.doi.org/10.1074/jbc.273.47.31463
[50] M. F. Vázquez-Bermúdez, J. Paz-Yepes, A. Herrero and E. Flores, “The NtcA Activated amt1 Gene Encodes a Permease Required for Uptake of Low Concentrations of Ammonium in the Cyanobacterium Synechococcus sp. PCC 7942,” Microbiology, Vol. 148, No. 3, 2002, pp. 861-869.
[51] M. I. Muro-Pastor and F. J. Florencio, “Regulation of Ammonium Assimilation in Cyanobacteria,” Plant Physiology and Biochemistry, Vol. 41, No. 6-7, 2003, pp. 595-603. http://dx.doi.org/10.1016/S0981-9428(03)00066-4

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.