Share This Article:

Quantum Group Signature Scheme Based on Chinese Remainder Theorem

Abstract Full-Text HTML Download Download as PDF (Size:158KB) PP. 16-20
DOI: 10.4236/jsea.2013.65B004    2,875 Downloads   4,008 Views   Citations


A novel quantum group signature scheme is proposed based on Chinese Remainder Theorem (CRT), in order to improve the security of quantum signature. The generation and verification of the signature can be successfully conducted only if all the participants cooperate with each other and with the message owner's and the arbitrator's help. The quantum parallel algorithm is applied to efficiently compare the restored quantum message to the original quantum message. All the operations in signing and verifying phase can be executed in quantum circuits. It has a wide application to E-payment system, Online contract, Online notarization and etc.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

X. Sun, Y. Guo, J. Shi, W. Zhang, Q. Xiao and M. Lee, "Quantum Group Signature Scheme Based on Chinese Remainder Theorem," Journal of Software Engineering and Applications, Vol. 6 No. 5B, 2013, pp. 16-20. doi: 10.4236/jsea.2013.65B004.


[1] S. William, “Cryptography and Network Security, Prin-ciples and Practice,” 2nd Edition,Prentice Hall, New Jersey, 2003.
[2] D. Chaum and E. V. Heyst, “Group Signatures,” Lecture Notes in Computer Science, Vol. 547, 1991, pp. 257-265. doi:10.1007/3-540-46416-6_22
[3] J. Camenisch and M. Stadler, “Efficient Group Signature Schemes for Large Groups,” Berlin, Springer 1296, 1997, pp. 410-424.
[4] E. Bresson and J. Stem, “Efficient Revo-cation in Group Signature,” Proceeding of PKC01 LNCS 1992, Berlin, Springer, 2001, pp. 190-206.
[5] G. Ate-niese, J. Camenisch and M. Joye, “A Practical and Provably Secure Coalition-resistant Group Signature Scheme,”Advances in Cryptology-Crypto2000 LNCS1880, 2000, pp. 255-270.
[6] N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, “Quantum Cryptography,” Reviews of Modern Physics, Vol. 74, No. 145, 2002. doi:10.1103/RevM5odPhys.74.14
[7] C. H. Bennett and G. Brassard, “Quantum Cryptography: Public Key Distribution and Coin Tossing,” Proceeding of IEEE International Conference on Computers Systems, 1984, pp. 175-179.
[8] A. K. Ekert, “Quantum Cryptography Based on Bells Theorem,” Physical Review Letters, Vol. 67, 1991, pp. 661-663. doi:10.1103/PhysRevLett.67.661
[9] N. R Zhou, L. J Wang, L. H Gong, X. W. Zuo and Y. Liu, “Quantum Deterministic Key Distribution Protocols Based on Teleportation and Entanglement Swapping,” Optics Communication, Vol. 284, 2011, pp. 4836-4842.
[10] C. H. Bennett, “Quantum Cryptography Using any Two Nonorthogonal States,” Physical Review.
[11] R. Cleve, D.Gottesman and H. K. Lo, “How to Share a Quantum Secret,” Physical Review Letters, Vol. 83, 1999, pp. 648-651. doi:10.1103/PhysRevLett.83.648
[12] M. Hillery, V. Buzek and A. Berthiaume, “Quantum Secret Sharing,”Physics Review A, Vol. 59, 1999, pp. 1829-1834. doi:10.1103/PhysRevA.59.1829
[13] A. Karlsson, M. Koashi and N. Imoto, “Quantum Entanglement for Secret Sharing and Secret Splitting,” Physical Review A, Vol. 59, 1999, pp. 162-168. doi:10.1103/PhysRevA.59.162
[14] G. L. Long and X. S. Liu, “Theoretically Efficient High-capacity Quan-tum-key-distribution Scheme,” Physical Review A, Vol. 65, 2002, pp 1-3.
[15] G. H. Zeng and C. H. Keitel, “Arbitrated Quantum Signature Scheme,” Physical Review A, Vol. 65, 2002, pp. 1-6.
[16] M. Curty and N. Lutkenhaus, Comment on “Arbitrated Quan-tum-signature Scheme,” Physical Review A, 2008, pp. 1-4.
[17] G. H. Zeng, Reply to “Comment on ‘Arbitrated Quantum-signature Scheme,”Physical Review A, Vol. 78, 2008, pp. 1-5.
[18] G. H. Zeng, M. H. Lee, Y. Guo and G. Q. He, “Continuous Variable Quantum Signature Al-gorithm,” International Journal of Quantum Infermation, Vol. 5, No. 4, 2007, pp. 553-573. doi:10.1142/S0219749907003031
[19] Q. Li, W. H. Chan and D. Y. Long, “Arbitrated Quantum Signature Scheme Using Bell States,” Physics Review A. 79, 2009, pp. 1-4.
[20] D. Gottesman and I. Chuang, “Quantum Digital Signatures,” 2001, pp. 1-8.
[21] H. Lee, C. H. Hong and H. Kim, “Arbitrated Quantum Signature Scheme with Message Recovery,” Physical Letters A, Vol. 32, 2004, pp. 295-300. doi:10.1016/j.physleta.2003.12.036
[22] M. Nielsen and I. Chuang, “Quantum Computation and Quantum Information,” Cambridge University Press, Cambridge, 2000, pp. 171-180.
[23] C. Ding, D. Pei and A. Salomaa, “Chinese Remainder Theorem: Applications in Computing, Coding, Cryptography,” World Scientific Publishing Co., Inc., 1996, pp. 1-8. doi:10.1142/9789812779380_0001
[24] J. J. Shi, R. H. Shi, Y. Tang and M. H. Lee, “A Multiparty Quantum Proxy Group Signature Scheme for the Entangled-state Message with Quantum Fourier Transform,” Quantum Information Processing, Vol. 10, No. 5, 2011, pp. 653-670. doi:10.1007/s11128-010-0225-7
[25] D. S. Oliveira and R. V. Ramos, “Quantum Bit String Comparator: Circuits and Applications,” Quatum Computers and computing, Vol. 7, No. 1, 2007, pp.17-26.
[26] X. J. Wen, “A Group Signature Scheme Based on Quantum Teleportation,” Physica Scripta, Vol. 81, No. 5, 2001.
[27] X. J. Wen, X. M. Niu, L. P. Ji and Y. Tian, “A Weak Blind Signature Scheme Based on Quantum Cryptography,” Optics Communication, Vol. 282, No. 4, 2009, pp. 666-669.
[28] Y. G. Yang and Q. Y. Wen, “Arbitrated Quantum Signature of Classical Messages against Collective Amplitude Damping Noise,” Opticcs Communication, Vol. 283, No. 16, 2010, pp. 3198-3201. doi:10.1016/j.optcom.2010.04.020
[29] T. Hwang, S. K. Chong, Y. P. Luo and T. X. Wei, “New Arbitrated Quantum Signature of Classical Messages Against Collective Amplitude Damping Noise,” Optics Communication, Vol. 284, 2011, No. 12. pp. 3144-3148. doi:10.1016/j.optcom.2011.01.025
[30] R. Xu, L. S. Huang, W. Yang and L. B. He, “Quantum Group Blind Signature Scheme without Entanglement,” Optics Communication, Vol. 284, 2011, No. 14, pp. 3144-3148. doi:10.1016/j.optcom.2011.03.083
[31] M. M. Wang, X. B. Chen, X. X. Niu and Y. X. Yang, “Re-examining the Security of Blind Quantum Signature Protocols,” Physica Scripta, Vol. 86, No. 5, 2012. doi:10.1088/0031-8949/86/05/055006
[32] T. Y. Wang and Q. Y. Wen, “Fair Quantum Blind Signatures,” Chinese Physics B, Vol. 19, No. 6, 2010. doi:10.1088/1674-1056/19/6/060307
[33] F. Gao, S. J. Qin, F. Z. Guo and Q. Y. Wen, “Cryptanalysis of the Arbitrated Quantum Signature Protocols,” Physical Review A, Vol. 84, No. 2, 2011. doi:10.1103/PhysRevA.84.022344
[34] Q. Li, W. H. Chan and D. Y. Long, “Arbitrated Quantum Signature Scheme Using Bell States,” Physics Review A, Vol. 79, No.5, 2009. doi:10.1103/PhysRevA.79.054307
[35] T. Hwang, Y. P. Luo and S. K. Chong, “Comment on ‘Security Analysis and Improvements of Arbitrated Quantum Signature Schemes’,” Physics Review A, Vol. 85, No. 5, 2012. doi:10.1103/PhysRevA.85.056301

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.