[1]

S. William, “Cryptography and Network Security, Principles and Practice,” 2nd Edition,Prentice Hall, New Jersey, 2003.


[2]

D. Chaum and E. V. Heyst, “Group Signatures,” Lecture Notes in Computer Science, Vol. 547, 1991, pp. 257265. doi:10.1007/3540464166_22


[3]

J. Camenisch and M. Stadler, “Efficient Group Signature Schemes for Large Groups,” Berlin, Springer 1296, 1997, pp. 410424.


[4]

E. Bresson and J. Stem, “Efficient Revocation in Group Signature,” Proceeding of PKC01 LNCS 1992, Berlin, Springer, 2001, pp. 190206.


[5]

G. Ateniese, J. Camenisch and M. Joye, “A Practical and Provably Secure Coalitionresistant Group Signature Scheme,”Advances in CryptologyCrypto2000 LNCS1880, 2000, pp. 255270.


[6]

N. Gisin, G. Ribordy, W. Tittel and H. Zbinden, “Quantum Cryptography,” Reviews of Modern Physics, Vol. 74, No. 145, 2002. doi:10.1103/RevM5odPhys.74.14


[7]

C. H. Bennett and G. Brassard, “Quantum Cryptography: Public Key Distribution and Coin Tossing,” Proceeding of IEEE International Conference on Computers Systems, 1984, pp. 175179.


[8]

A. K. Ekert, “Quantum Cryptography Based on Bells Theorem,” Physical Review Letters, Vol. 67, 1991, pp. 661663. doi:10.1103/PhysRevLett.67.661


[9]

N. R Zhou, L. J Wang, L. H Gong, X. W. Zuo and Y. Liu, “Quantum Deterministic Key Distribution Protocols Based on Teleportation and Entanglement Swapping,” Optics Communication, Vol. 284, 2011, pp. 48364842.


[10]

C. H. Bennett, “Quantum Cryptography Using any Two Nonorthogonal States,” Physical Review.


[11]

R. Cleve, D.Gottesman and H. K. Lo, “How to Share a Quantum Secret,” Physical Review Letters, Vol. 83, 1999, pp. 648651. doi:10.1103/PhysRevLett.83.648


[12]

M. Hillery, V. Buzek and A. Berthiaume, “Quantum Secret Sharing,”Physics Review A, Vol. 59, 1999, pp. 18291834. doi:10.1103/PhysRevA.59.1829


[13]

A. Karlsson, M. Koashi and N. Imoto, “Quantum Entanglement for Secret Sharing and Secret Splitting,” Physical Review A, Vol. 59, 1999, pp. 162168. doi:10.1103/PhysRevA.59.162


[14]

G. L. Long and X. S. Liu, “Theoretically Efficient Highcapacity Quantumkeydistribution Scheme,” Physical Review A, Vol. 65, 2002, pp 13.


[15]

G. H. Zeng and C. H. Keitel, “Arbitrated Quantum Signature Scheme,” Physical Review A, Vol. 65, 2002, pp. 16.


[16]

M. Curty and N. Lutkenhaus, Comment on “Arbitrated Quantumsignature Scheme,” Physical Review A, 2008, pp. 14.


[17]

G. H. Zeng, Reply to “Comment on ‘Arbitrated Quantumsignature Scheme,”Physical Review A, Vol. 78, 2008, pp. 15.


[18]

G. H. Zeng, M. H. Lee, Y. Guo and G. Q. He, “Continuous Variable Quantum Signature Algorithm,” International Journal of Quantum Infermation, Vol. 5, No. 4, 2007, pp. 553573. doi:10.1142/S0219749907003031


[19]

Q. Li, W. H. Chan and D. Y. Long, “Arbitrated Quantum Signature Scheme Using Bell States,” Physics Review A. 79, 2009, pp. 14.


[20]

D. Gottesman and I. Chuang, “Quantum Digital Signatures,” 2001, pp. 18.


[21]

H. Lee, C. H. Hong and H. Kim, “Arbitrated Quantum Signature Scheme with Message Recovery,” Physical Letters A, Vol. 32, 2004, pp. 295300. doi:10.1016/j.physleta.2003.12.036


[22]

M. Nielsen and I. Chuang, “Quantum Computation and Quantum Information,” Cambridge University Press, Cambridge, 2000, pp. 171180.


[23]

C. Ding, D. Pei and A. Salomaa, “Chinese Remainder Theorem: Applications in Computing, Coding, Cryptography,” World Scientific Publishing Co., Inc., 1996, pp. 18. doi:10.1142/9789812779380_0001


[24]

J. J. Shi, R. H. Shi, Y. Tang and M. H. Lee, “A Multiparty Quantum Proxy Group Signature Scheme for the Entangledstate Message with Quantum Fourier Transform,” Quantum Information Processing, Vol. 10, No. 5, 2011, pp. 653670. doi:10.1007/s1112801002257


[25]

D. S. Oliveira and R. V. Ramos, “Quantum Bit String Comparator: Circuits and Applications,” Quatum Computers and computing, Vol. 7, No. 1, 2007, pp.1726.


[26]

X. J. Wen, “A Group Signature Scheme Based on Quantum Teleportation,” Physica Scripta, Vol. 81, No. 5, 2001.


[27]

X. J. Wen, X. M. Niu, L. P. Ji and Y. Tian, “A Weak Blind Signature Scheme Based on Quantum Cryptography,” Optics Communication, Vol. 282, No. 4, 2009, pp. 666669.


[28]

Y. G. Yang and Q. Y. Wen, “Arbitrated Quantum Signature of Classical Messages against Collective Amplitude Damping Noise,” Opticcs Communication, Vol. 283, No. 16, 2010, pp. 31983201. doi:10.1016/j.optcom.2010.04.020


[29]

T. Hwang, S. K. Chong, Y. P. Luo and T. X. Wei, “New Arbitrated Quantum Signature of Classical Messages Against Collective Amplitude Damping Noise,” Optics Communication, Vol. 284, 2011, No. 12. pp. 31443148. doi:10.1016/j.optcom.2011.01.025


[30]

R. Xu, L. S. Huang, W. Yang and L. B. He, “Quantum Group Blind Signature Scheme without Entanglement,” Optics Communication, Vol. 284, 2011, No. 14, pp. 31443148. doi:10.1016/j.optcom.2011.03.083


[31]

M. M. Wang, X. B. Chen, X. X. Niu and Y. X. Yang, “Reexamining the Security of Blind Quantum Signature Protocols,” Physica Scripta, Vol. 86, No. 5, 2012. doi:10.1088/00318949/86/05/055006


[32]

T. Y. Wang and Q. Y. Wen, “Fair Quantum Blind Signatures,” Chinese Physics B, Vol. 19, No. 6, 2010. doi:10.1088/16741056/19/6/060307


[33]

F. Gao, S. J. Qin, F. Z. Guo and Q. Y. Wen, “Cryptanalysis of the Arbitrated Quantum Signature Protocols,” Physical Review A, Vol. 84, No. 2, 2011. doi:10.1103/PhysRevA.84.022344


[34]

Q. Li, W. H. Chan and D. Y. Long, “Arbitrated Quantum Signature Scheme Using Bell States,” Physics Review A, Vol. 79, No.5, 2009. doi:10.1103/PhysRevA.79.054307


[35]

T. Hwang, Y. P. Luo and S. K. Chong, “Comment on ‘Security Analysis and Improvements of Arbitrated Quantum Signature Schemes’,” Physics Review A, Vol. 85, No. 5, 2012. doi:10.1103/PhysRevA.85.056301

