Share This Article:

Bandwidth Enhancement of RMPA Using 2 Segment Labyrinth Metamaterial at THz

Abstract Full-Text HTML Download Download as PDF (Size:2124KB) PP. 579-588
DOI: 10.4236/msa.2013.410071    2,956 Downloads   4,914 Views   Citations
Author(s)    Leave a comment

ABSTRACT

The past few years have been very eventful with respect to the evolution of the concept and implementation of left-handed materials (LHMs)”. This paper elucidates antenna parameter optimization using 2 Segment Labyrinth metamaterial embedded in antenna substrate at high frequency (THz). Ansoft HFSS has been used to design and analyse the RMPA (rectangular microstrip patch antenna) with design frequency 9.55 THz and operating range of 8.55 THz to 10.55 THz having RT Duroid (εr = 2.33) as substrate material. Magnetic properties of labyrinth resonator have been used to mathematically demonstrate the negative refraction. Nicolson Ross Wier (NRW) method has been used to retrieve the material parameters from transmission and reflection coefficient. Upon incorporation, bandwidth widens to around 4% and VSWR improves by approx 1.5%.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

P. Dawar and A. De, "Bandwidth Enhancement of RMPA Using 2 Segment Labyrinth Metamaterial at THz," Materials Sciences and Applications, Vol. 4 No. 10, 2013, pp. 579-588. doi: 10.4236/msa.2013.410071.

References

[1] V. G. Veselago, “The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ,” Soviet Physics-Uspekhi, Vol. 10, No. 4, 1968, pp. 509-514. http://dx.doi.org/10.1070/PU1968v010n04ABEH003699
[2] J. B. Pendry, A. J. Holden, W. J. Stewart and I. Youngs, “Extremely Low Frequency Plasmons in Metallic Micro Structures,” Physical Review Letters, Vol. 76, No. 25, 1996, pp. 4773-4776. http://dx.doi.org/10.1103/PhysRevLett.76.4773
[3] J. B. Pendry, A. J. Holden, D. J. Robbins and W. J. Stewart, “Magnetism from Conductors and Enhanced Nonlinear Phenomena,” IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 1999, pp. 2075-2084. http://dx.doi.org/10.1109/22.798002
[4] D. R. Smith, Willie J. Padilla, D. C. Vier, S. C. NematNasser and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Physical Review Letters, Vol. 84, No. 18, 2000, pp. 4184-4187. http://dx.doi.org/10.1103/PhysRevLett.84.4184
[5] R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser and S. Schultz,” Microwave Transmission through a Two-Dimensional, Isotropic, Left-Handed Metamaterial,” Applied Physics Letters, Vol. 78, No. 4, 2001, pp. 489-491. http://dx.doi.org/10.1063/1.1343489
[6] E. Ozbay and C. M. Soukoulis, “Observation of Negative Refraction and Negative Phase Velocity in True LeftHanded Metamaterials,” Proceedings of the 36th European Microwave Conference (EuMA), Manchester, 10-15 September 2006, pp. 959-962.
[7] A. Sihnola, “Character of Surface Plasmons in Layered Spherical Structures,” Progress in Electromagnetics Research, Vol. 62, 2006, pp. 317-331. http://dx.doi.org/10.2528/PIER06042801
[8] H. O. Moser, B. D. F. Casse, O. Wilhelmi and B. T. Saw, “Terahertz Response of a Microfabricated Rod—SplitRing-Resonator Electromagnetic Metamaterial,” Physical Review Letters, Vol. 94, No. 6, 2005, Article ID: 063901. http://dx.doi.org/10.1103/PhysRevLett.94.063901
[9] “HFSS Online Help,” Ansoft Corporation, 2007.
[10] C. A. Balanis, “Antenna Theory,” John Wiley & Sons Inc., Hoboken, 1999.
[11] W. Withayachumnankul and D. Abbott, “Metamaterials in the Terahertz Regime,” IEEE Photonics Journal, Vol. 1, No. 2, 2009, pp. 99-118. http://dx.doi.org/10.1109/JPHOT.2009.2026288
[12] H. Benosman and N. B. Hacene, “Design and Simulation of Double ‘S’ Shaped Metamaterial,” IJCSI International Journal of Computer Science Issues, Vol. 9, No. 2, 2012, pp. 534-537.
[13] R. W. Ziolkowski, “Design, Fabrication and Testing of Double Negative Metamaterials,” IEEE Transactions on Antenna and Propagation, Vol. 51, No. 7, 2003, pp. 1516-1529. http://dx.doi.org/10.1109/TAP.2003.813622
[14] Y. Minowa, M. Nagai, H. Tao, K, B. Fan, A. C. Strikwerda, X. Zhang, R. D. Averitt and K. Tanaka, “Extremely Thin Metamaterial as Slab Waveguide at Terahertz Frequencies,” IEEE Transactions on Terahertz Science and Technology, Vol. 1, No. 2, 2011, pp. 441-449.
[15] F. Bilotti, S. Member, A. Toscano, L. Vegni, K. Aydin, K. B. Alici and E. Ozbay,” Equivalent-Circuit Models for the Design of Metamaterials Based on Artificial Magnetic Inclusions,” IEEE Transactions on Microwave Theory and Techniques, Vol. 55, No. 12, 2007, pp. 2865-2873. http://dx.doi.org/10.1109/TMTT.2007.909611
[16] H.-T. Chen, W. J. Padilla, R. D. Averitt, A. C. Gossard, C. Highstrete, M. Lee, J. F. O’Hara and A. J. Taylor, “Electromagnetic Metamaterials for Terahertz Applications,” Terahertz Science and Technology, Vol. 1, No. 1, 2008, pp. 42-50.
[17] D. Ionescu and M. Kovaci, “About the Negative Permittivity of Some Metamaterial Composites—Simulational Study,” IEEE 17th International Symposium for Design and Technology in Electronic Packaging (SIITME), Timisoara, 20-23 October 2011, pp. 197-200.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.