Investigation of Some Structural and Mechanical Properties of Ba0.5CaxSr0.5-xTiO3 Ceramics

Abstract

Ba0.5CaxSr0.5-xTiO3 (BCST) ceramics, where x = 0, 0.1, 0.2, 0.3 and 0.4, were prepared by the conventional solid state reaction technique. X-ray diffraction (XRD) analysis confirmed the formation of BST perovskite phase structure besides some calcium oxide peaks for samples with high Ca content, x. Scanning electron microscopy (SEM) results confirmed the XRD results, i.e., as x increased, the average grain size decreased. Energy dispersive X-ray (EDX) analysis verified the increase of the amount of Ca element with increasing of its content. Mechanical properties such as ultrasonic attenuation, longitudinal wave velocity, and longitudinal elastic modulus were studied by an ultrasonic pulse echo technique at 2 MHz frequency. Investigations of ceramic microstructures and mechanical properties showed their dependence on composition. Increasing of Ca content resulted in a decrease in bulk density and ultrasonic attenuation and an increase in porosity, velocity, and modulus. High temperature ultrasonic studies showed, in addition to Curie phase transition, three or more relaxation peaks and its origin was investigated.

Share and Cite:

L. El-Deen, M. Badr, A. Khafagy and D. Nassar, "Investigation of Some Structural and Mechanical Properties of Ba0.5CaxSr0.5-xTiO3 Ceramics," Crystal Structure Theory and Applications, Vol. 2 No. 3, 2013, pp. 132-138. doi: 10.4236/csta.2013.23018.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] K. Abe and S. Komatsu, “Ferroelectric Properties in Epitaxially Grown BaxSr1-xTiO3 Thin Films,” Journal of Applied Physics, Vol. 77, No. 12, 1995, pp. 6461-6465. doi:10.1063/1.359120
[2] Z. L. Wang and Z. C. Kang, “Functional and Smart Materials—Structural Evolution and Structural Analysis,” Science Press, Beijing, 2002.
[3] L. C. Sengupta and S. Sengupta, “Novel Ferroelectric Materials for Phased Array Antennas,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 44, No. 4, 1997, pp. 792-797. doi:10.1109/58.655193
[4] S. S. Gevorgian and E. L. Kollberg, “Do We Really Need Ferroelectrics in Paraelectric Phase Only in Electrically Controlled Microwave Devices?” IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 11, 2001, pp. 2117-2124. doi:10.1109/22.963146
[5] P. C. Joshi and M. W. Cole, “Mg-doped Ba0.6Sr0.4TiO3 Thin Films for Tunable Microwave Applications,” Applied Physics Letters, Vol. 77, No. 2, 2000, pp. 289-291. doi:10.1063/1.126953
[6] W. Chang and L. Sengupta, “MgO-mixed Ba0.6Sr0.4TiO3 Bulk Ceramics and Thin Films for Tunable Microwave Applications,” Journal of Applied Physics, Vol. 92, No. 7, 2002, pp. 3941-3946. doi:10.1063/1.1505669
[7] M. Kuwabara, H. Matsuda and Y. Ohba, “Varistor Characteristics in PTCR-Type (Ba,Sr)TiO3 Ceramics Prepared by Single-Step Firing in Air,” Journal of Materials Science, Vol. 34, No. 11, 1999, pp. 2635-2639. doi:10.1023/A:1004661018287
[8] J. F. Scott, M. Azuma, E. Fujii, T. Otsuki, G. Kano, M. C. Scott, C. A. Paz de Araujo, L. D. McMillan and T. Roberts, “Microstructure-Induced Schottky Barrier Effects in Barium Strontium Titanate (BST) Thin Films for 16 and 64 Mbit (DRAM cells),” Proceedings of International Symposium on Integrated Ferroelectrics, New York, 1992, p. 356.
[9] X. Weidong, L. Yanrong and Y. Chun, “First Principle Studies on Fine Structure for BaxSr1-xTiO3,” Chinese Journal of Chemical Physics, Vol. 18, No. 2, 2005, pp. 179-182.
[10] T. Hu, H. Jantunen, A. Uusimaki and S. J. Leppavuori, “BST Powder with Sol-Gel Process in Tape Casting and Firing,” Journal of the European Ceramic Society, Vol. 24, No. 6, 2004, pp. 1111-1116. doi:10.1016/S0955-2219(03)00427-8
[11] V. V. Lemanov, “Concentration Dependence of Phonon Mode Frequencies and the GrüNeisen Coefficients in BaxSr1-xTiO3 Solid Solutions,” Physics of the Solid State, Vol. 39, No. 2, 1997, pp. 318-322. doi:10.1134/1.1129842
[12] B. Jaffe, W. R. Cook and H. Jaffe, “Piezoelectric Ceramics,” Academic Press, London, 1971.
[13] B. L. Cheng, M. Gabbay, M. Maglione and G. Fantozzi, “Relaxation Motion and Possible Memory of Domain Structures in Barium Titanate Ceramics Studied by Mechanical and Dielectric Losses,” Journal of Electroceramics, Vol. 10, No. 1, 2003, pp. 5-18. doi:10.1023/A:1024007407033
[14] A. Ioachim, M. I. Toacsan, M. G. Banciu, L. Nedelcu, C. Plapcianu, H. V. Alexandru, C. Berbecaru, D. Ghetu, G. Stoica and R. Ramer, “Frequency Agile BST Materials for Microwave Applications,” Journal of Optoelectronics and Advanced Materials, Vol. 5, No. 5, 2003, pp. 1389-1393.
[15] M. H. Badr, L. M. Sharaf El-Deen, A. H. Khafagy and D. U. Nassar, “Structural and Mechanical Properties Characterization of Barium Strontium Titanate (BST) Ceramics,” Journal of Electroceramics, Vol. 27, No. 3-4, 2011, pp. 189-196. doi:10.1007/s10832-011-9664-5
[16] O. P. Thakur, C. Prakash and D. K. Agrawal, “Dielectric Behavior of Ba0.95Sr0.05TiO3 Ceramics Sintered by Microwave,” Materials Science and Engineering: B, Vol. 96, No. 3, 2002, pp. 221-225. doi:10.1016/S0921-5107(02)00159-9
[17] J. F. Scott, “High-Dielectric Constant Thin Films for Dynamic Random Access Memories (DRAM),” Annual Review of Materials Research, Vol. 28, No. 1, 1998, pp. 79-100. doi:10.1146/annurev.matsci.28.1.79
[18] C. Berbecaru, H. V. Alexandru, C. Porosnicu, A. Velea, , A. Ioachim, L.Nedelcu and M. Toacsan, “Ceramic Materials Ba(1-x)SrxTiO3 for Electronics—Synthesis and Characterization,” Thin Solid Films, Vol. 516, No. 22, 2008, pp. 8210-8214. doi:10.1016/j.tsf.2008.04.031
[19] S. Yun, X. Wang, B. Li and D. Xu, “Dielectric Properties Ca-Substituted Barium Strontium Titanate Ferroelectric Ceramics,” Solid State Communications, Vol. 143, No. 10, 2007, pp. 461-465. doi:10.1016/j.ssc.2007.06.031
[20] V. V. Lemanov, A. V. Sotnikov, E. P. Smirnova, P. P. Syrnikov and E. A. Tarakanov, “Phase Transitions and Glasslike Behavior in Sr(1-x)BaxTiO3,” Physical Review B, Vol. 54, No. 5, 1996, pp. 3151-3157. doi:10.1103/PhysRevB.54.3151
[21] A. K. Singh, Subrat K. Barik, R. N. P. Choudhary and P. K. Mahapatra, “Ac Conductivity and Relaxation Mechanism in Ba0.9Sr0.1TiO3,” Journal of Alloys and Compounds, Vol. 479, No. 1-2, 2009, pp. 39-42. doi:10.1016/j.jallcom.2008.12.130
[22] Y.-C. Liou and C.-T. Wu, “Synthesis and Diffused Phase Transition of Ba0.7Sr0.3TiO3 Ceramics by a Reaction-Sintering Process,” Ceramics International, Vol. 34, No. 3, 2008, pp. 517-522. doi:10.1016/j.ceramint.2006.11.005
[23] C. Fu, C. Yang, H. Chen, W. Wang, and L. Hu, “Microstructure and Dielectric Properties of BaxSr1-xTiO3 Ceramics,” Materials Science and Engineering: B, Vol. 119, No. 2, 2005, pp. 185-188. doi:10.1016/j.mseb.2005.02.056
[24] A. Ioachim, R. Ramer, M. I. Toacsan, M. G. Banciu, L. Nedelcu, C. A. Dutu, F. Vasiliu, H. V. Alexandru, C. Berbecaru, G. Stoica and P. Nita, “Effect of the Sintering Temperature on the Ba(Zn 1/3Ta 2/3)O3 Dielectric Properties,” Journal of the European Ceramic Society, Vol. 27, No. 2-3, 2007, pp. 1117-1122. doi:10.1016/j.jeurceramsoc.2006.05.023
[25] A. Ioachim, H. V. Alexandru, C. Berbecaru, S. Antohe, F. Stanculescu, M. G. Banciu, M. I. Toacsan, L. Nedelcu, D. Ghetu, A. Dutu and G. Stoica, “Dopant Influence on BST Ferroelectric Solid Solutions Family,” Materials Science and Engineering: C, Vol. 26, No. 5-7, 2006, pp. 1156-1161. doi:10.1016/j.msec.2005.09.045
[26] G. Cigna, “Dynamic Mechanical Properties, Structure, and Composition of Impact Polystyrene,” Journal of Applied Polymer Science, Vol. 14, No. 7, 1970, pp. 1781-1793. doi:10.1002/app.1970.070140712
[27] H. Frayssignes, B. L. Cheng, G. Fantozzi and T. W. Button, “Phase Transformation in BST Ceramics Investigated by Internal Friction Measurements,” Journal of the European Ceramic Society, Vol. 25, No. 13, 2005, pp. 3203-3206. doi:10.1016/j.jeurceramsoc.2004.07.030
[28] B. L. Cheng, B. Su, J. E. Holmes, T. W. Button, M. Gabbay and G. Fantozzi, “Dielectric and Mechanical Losses in (Ba,Sr)TiO3 Systems,” Journal of Electroceramics, Vol. 9, No. 1, 2002, pp. 17-23. doi:10.1023/A:1021633917071
[29] A. S. Nowick and B. S. Berry, “Anelastic Relaxation in Crystalline Solids,” Academic Press, New York, 1972.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.