Share This Article:

6-Azido-Galactosyl Imidate as a Building Block for Preparation of 1-(4-Aminobutyl)-, Di-, Tri- and Tetra-Saccharides

Abstract Full-Text HTML Download Download as PDF (Size:672KB) PP. 74-86
DOI: 10.4236/ojmc.2013.33010    4,076 Downloads   6,342 Views   Citations


6-azidogalactosyl imidate has been used as a donor to generate 1-(4-aminobutyl)-6-aminogalactose, 6-aminothiotolyl- glycosides of disaccharide, trisaccharide and tetrasaccharide that incorporates 6-azido group and 1-(4-tolyl)thio group. Trisaccharide and tetrasaccharide were obtained from lactosyl-based acceptor. The anomeric 1-(4-tolyl)thio group could be used to conjugate with sphingosine analogs to provide the alpha-Gal Sph analogs for library extension from the azido group.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

K. Lin, L. Chiang, C. Pan, H. Huang, Y. Su, S. Chen, Y. Huang and C. Yu, "6-Azido-Galactosyl Imidate as a Building Block for Preparation of 1-(4-Aminobutyl)-, Di-, Tri- and Tetra-Saccharides," Open Journal of Medicinal Chemistry, Vol. 3 No. 3, 2013, pp. 74-86. doi: 10.4236/ojmc.2013.33010.


[1] P. J. Brennan, M. Brigl and M. B. Brenner, “Invariant Natural Killer T Cells: An Innate Activation Scheme Linked to Diverse Effector Functions,” Nature Reviews Immunology, Vol. 13, No. 2, 2013, pp. 107-117. doi:10.1038/nri3369
[2] M. J. Smyth, N. Y. Crowe, Y. Hayakawa, K. Takeda, H. Yagita and D. Godfrey, “NKT Cells—Conductors of Tumor Immunity?” Current Opinion in Immunology, Vol. 14, No. 2, 2002, pp. 165-171. doi:10.1016/S0952-7915(02)00316-3
[3] L. Zhang, F. Sun, Y. X. Li, X. Sun, X. M. Liu, Y. S. Huang, L. H. Zhang, X. S. Ye and J. Xiao, “Rapid Synthesis of Iminosugar Derivatives for Cell-Based in Situ Screening: Discovery of ‘Hit’ Compounds with Anticancer Activity,” ChemMedChem, Vol. 2, No. 11, 2007, pp. 1594-1597. doi:10.1002/cmdc.200700120
[4] G. T. Le, G. Abbenante, B. Becker, M. Grathwohl, J. Halliday, G. Tometzki, J. Zuegg and W. Meutermans, “Molecular Diversity through Sugar Scaffolds,” Drug Discovery Today, Vol. 8, No. 15, 2003, pp. 701-709. doi:10.1016/S1359-6446(03)02751-X
[5] B. Elchert, J. Li, J. H. Wang, Y. Hui, R. Rai, R. Ptak, P. Ward, J. Y. Takemoto, M. Bensaci and C. W. T. Chang, “Application of the Synthetic Aminosugars for Glycodiversification: Synthesis and Antimicrobial Studies of Pyranmycin,” The Journal of Organic Chemistry, Vol. 69, No. 5, 2004, pp. 1513-1523. doi:10.1021/jo035290r
[6] R. Liang, L. Yan, J. Loebach, M. Ge, Y. Uozumi, K. Sekanina, N. Horan, J. Gildersleeve, C. Thompson, A. Smith, K. Biswas, W. C. Still and D. Kahne, “Parallel Synthesis and Screening of a Solid Phase Carbohydrate Library,” Science, Vol. 274, No. 5292, 1996, pp. 1520- 1522. doi:10.1126/science.274.5292.1520
[7] D. L. Boger, J. Desharnais and K. Capps, “Solution-Phase Combinatorial Libraries: Modulating Cellular Signaling by Targeting Protein-Protein or Protein-DNA Interactions,” Angewandte Chemie International Edition, Vol. 42, No. 35, 2003, pp. 4138-4176. doi:10.1002/anie.200300574
[8] R. A. Houghten, “Parallel Array and Mixture-Based Synthetic Combinatorial Chemistry: Tools for the Next Millennium,” Annual Review of Pharmacology and Toxicology, Vol. 40, 2000, pp. 273-282. doi:10.1146/annurev.pharmtox.40.1.273
[9] L.-W. Chiang, K. Pei, S.-W. Chen, H.-L. Huang, K.-J. Lin, T.-C. Yen and C.-S. Yu, “Combining a Solution- Phase Derived Library with In-Situ Cellular Bioassay: Prompt Screening of Amide-Forming Minilibraries Using MTT Assay,” Chemical and Pharmaceutical Bulletin, Vol. 57, No. 7, 2009, pp.714-718. doi:10.1248/cpb.57.714
[10] K.-I Lin, C.-H. Yang, C.-W. Huang, J.-Y. Jian, Y.-C. Huang and C.-S. Yu, “Synthesis and Structure-Activity Relationships of Fenbufen Amide Analogs,” Molecules, Vol. 15, No. 12, 2010, pp. 8796-8803. doi:10.3390/molecules15128796
[11] Y.-H. Su, L.-W. Chiang, K.-C. Jeng, H.-L. Huang, J. Chen, W. Z. Lin, C.-W. Huang and C.-S. Yu, “Solution- Phase Parallel Synthesis and Screening of Anti-Tumor Activities from Fenbufen and Ethacrynic Acid Libraries,” Bioorganic & Medicinal Chemistry Letters, Vol. 21, No. 5, 2011, pp. 1320-1324. doi:10.1016/j.bmcl.2011.01.068
[12] Y.-C. Huang, L.-W. Chiang, K.-S. Chang, W.-C. Su, Y.-H. Lin, K.-C. Jeng, K.-I. Lin, K.-Y. Liao, H.-L. Huang and C.-S. Yu, “Synthesis of Amino Cores of Galactosyl Ceramide Analogs for Developing INKT-Cell Inducers,” Molecules, Vol. 17, No. 3, 2012, pp. 3058-3081.
[13] H.-L. Huang, C.-N. Yeh, K.-W. Chang, J. Chen, K.-J. Lin, L.-W. Chiang, K.-C. Jeng, W.-T. Wang, K.-H. Lim, C. G. Chen, K.-I. Lin, Y.-C. Huang, W.-J. Lin, T.-C. Yen and C.-S. Yu, “Synthesis and Evaluation of [18F]Fluorobutyl Ethacrynic Amide: A Potential PET Tracer for Studying Glutathione Transferase,” Bioorganic & Medicinal Chemistry Letters, Vol. 22, No. 13, 2012, pp. 3998-4003.
[14] H.-L. Huang, C.-N. Yeh, W.-Y. Lee, Y.-C. Huang, K.-W. Chang, K.-J. Lin, S.-F. Tien, W.-C. Su, C.-H. Yang, J.-T. Chen, W.-J. Lin, S.-S. Fan and C.-S. Yu, “[123I]Iodooctyl Fenbufen Amide as a SPECT Tracer for Imaging Tumors that Over-Express COX Enzymes,” Biomaterials, Vol. 34, No. 13, 2013, pp. 3355-3365.
[15] O. Plettenburg, V. Bodmer-Narkevitch and C. H. Wong, “Synthesis of Alpha-Galactosyl Ceramide, a Potent Immunostimulatory Agent,” The Journal of Organic Chemistry, Vol. 67, No. 13, 2002, pp. 4559-4564. doi:10.1021/jo0201530
[16] C. S. Yu, H. Y. Wang, L. W. Chiang and K. Pei, “Synthesis of the Rhamnosyl Trisaccharide Repeating Unit to Mimic the Antigen Determinant of Pseudomonas Syringae Lipopolysaccharide,” Synthesis, No. 9, 2007, pp. 1412-1420. doi:10.1055/s-2007-965995
[17] C. S. Yu, K. Niikura, C. C. Lin and C. H. Wong, “The Thioglycoside and Glycosyl Phosphite of 5-Azido Sialic Acid: Excellent Donors for the Alpha-Glycosylation of Primary Hydroxy Groups,” Angewandte Chemie International Edition, Vol. 40, No. 15, 2001, pp. 2900-2903. doi:10.1002/1521-3773(20010803)40:15<2900::AID-ANIE2900>3.0.CO;2-4
[18] Z. Y. Zhang, I. R. Ollmann, X. S. Ye, R. Wischnat, T. Baasov and C. H. Wong, “Programmable One-Pot Oligosaccharide Synthesis,” Journal of the American Chemical Society, Vol. 121, No. 4, 1999, pp. 734-753. doi:10.1021/ja982232s
[19] S. Y. Hsieh, M. D. Jan, L. N. Patkar, C. T. Chen and C. C. Lin, “Synthesis of a Carboxyl Linker Containing P-K Trisaccharide,” Carbohydrate Research, Vol. 340, No. 1, 2005, pp. 49-57. doi:10.1016/j.carres.2004.10.024
[20] A. Patel and T. K. Lindhorst, “Synthesis of ‘Mixed-Type’ Oligosaccharide Mimetics Based on a Carbohydrate Scaffold,” European Journal of Organic Chemistry, No. 1, 2002, pp. 79-86.
[21] C. S. Yu, C. H. Wu, L. W. Chiang and R. T. Wang, H. Y. Wang, C. H. Yeh and K. I. Lin, “Synthesis of (E)-5- (2-Radioiodovinyl)arabinosyl Uridine Analog for Probing HSV-1 Thymidine Kinase Gene,” Chemistry Letters, Vol. 34, No. 10, 2005, pp. 1390-1391. doi:10.1246/cl.2005.1390
[22] K.-I. Lin, L.-W. Chiang, C.-H. Wu, S.-W. Chen and C.-S. Yu, “Synthesis of 5-Radioiodoarabinosyl Uridine Analog for Probing the HSV-1 Thymidine Kinase Gene,” Journal of the Chinese Chemical Society, Vol. 54, No. 2, 2007, pp. 563-568.
[23] C. S. Yu and F. Oberdorfer, “Synthesis of 4-O-Methyl- Protected 5-(2-Hydroxyethy)-2’-Deoxyuridine Derivatives and their Nucleophilic Fluorination to 5-(2-Fluoroethyl)-2’-Deoxyuridine,” Synthesis, No. 12, 1999, pp. 2057-2064. doi:10.1055/s-1999-3641
[24] C. S. Yu and F. Oberdorfer, “Synthesis of (E)-5-[2-(Tri- N-Butylstannyl)Vinyl] Substituted 2’-Deoxyuridine Derivatives for Use in Halogenation and Radiohalogenation Reactions,” Synlett, No. 1, 2000, pp. 86-88.
[25] C. S. Yu, R. T. Wang, L. W. Chiang and M. H. Lee, “Synthesis of 4’,4’-C-Diaminomethyl Nucleoside Derivative As a Building Block for Constructing Libraries via Amide Bond Formation,” Tetrahedron Letters, Vol. 48, No. 17, 2007, pp. 2979-2982. doi:10.1016/j.tetlet.2007.03.002
[26] H. C. Hansen and G. Magnusson, “Synthesis of Selected Aminodeoxy Analogues of Galabiose and Globotriose,” Carbohydrate Research, Vol. 322, No. 3-4, 1999, pp. 166-180. doi:10.1016/S0008-6215(99)00229-3
[27] F. L. Lin, H. van Halbeek and C. R. Bertozzi, Synthesis of Mono- and Dideoxygenated, -Trehalose Analogs,” Carbohydrate Research, Vol. 342, No. 14, 2007, pp. 2014-2030. doi:10.1016/j.carres.2007.05.009
[28] X. Zhu and R. R. Schmidt, “Glycoside Synthesis from 1- Oxygen-Substituted Glycosyl Imidates,” In: A. V. Demchenko, Ed., Handbook of Chemical Glycosylation: Advances in Stereoselectivity and Therapeutic Relevance, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008, pp. 143-185.
[29] P. B. Alper, S. C. Hung and C. H. Wong, “Metal Catalyzed Diazo Transfer for the Synthesis of Azides from Amines,” Tetrahedron Letters, Vol. 37, No. 34, 1996, pp. 6029-6032. doi:10.1016/0040-4039(96)01307-X
[30] A. X. Li and F. Z. Kong, “Syntheses of Beta-(1→6)- Branched Beta-(1→3)-Linked D-Galactans that Exist in the Rhizomes of Atractylodes Lancea DC,” Carbohydrate Research, Vol. 340, No. 12, 2005, pp. 1949-1962. doi:10.1016/j.carres.2005.05.017
[31] Y. G. Gu, M. M. Zhang, F. Yang and G. F. Gu, “A Simple Access to 3,6-Branched Oligosaccharides: Synthesis of a Glycopeptide Derivative that Relates to Lycium Barbarum L,” Journal of the Chemical Society, Perkin Transactions 1, No. 23, 2001, pp. 3122-3127.
[32] A. X. Li and F. Z. Kong, “Syntheses of Arabinogalactans Consisting of Beta-(1→6)-Linked D-Galactopyranosyl Backbone and Alpha-(1→3)-Linked L-Arabinofuranosyl Side Chains,” Carbohydrate Research, Vol. 339, No. 11, 2004, pp. 1847-1856. doi:10.1016/j.carres.2004.05.007
[33] T. Yamamura, N. Hada, A. Kaburaki, K. Yamano and T. Takeda, “Synthetic Studies on Glycosphingolipids from Protostomia Phyla: Total Syntheses of Glycosphingolipids from the Parasite, Echinococcus Multilocularis,” Carbohydrate Research, Vol. 339, No. 17, 2004, pp. 2749- 2759. doi:10.1016/j.carres.2004.09.015
[34] J. Ning, Y. Yi and Z. Yao, “An Efficient Method for the Synthesis of 2,6-Branched Galacto-Oligosaccharides and its Applications to the Synthesis of three Tetrasaccharides and a Hexasaccharide Related to the Arabinogalactans (Ags),” Synlett, No. 14, 2003, 2208-2212.
[35] Y. Zeng, Z. Wang, D. Whitfield and X. Huang, “Installation of Electron-Donating Protective Groups, a Strategy for Glycosylating Unreactive Thioglycosyl Acceptors Using the Preactivation-Based Glycosylation Method,” The Journal of Organic Chemistry, Vol. 73, No. 20, 2008, pp. 7952-7962. doi:10.1021/jo801462r
[36] C. S. Chao, M. C. Chen, S. C. Lin and K. K. T. Mong, “Versatile Acetylation of Carbohydrate Substrates with Bench-Top Sulfonic Acids and Application to One-Pot Syntheses of Peracetylated Thioglycosides,” Carbohydrate Research, Vol. 343, No. 5, 2008, pp. 957-964. doi:10.1016/j.carres.2008.01.014
[37] L. Chen, F. F. Liang, M. F. Xu, G. W. Xing and Z. W. Deng, “Synthesis of the Methyl Glycoside of Ganglioside GM(3) Trisaccharide Derivative with N-Acetyl-5-N,4-O- Oxazolidinone Protected P-Toluenethiosialoside,” Acta Chimica Sinica, Vol. 67, No. 12, 2009, pp. 1355-1362.
[38] C. Y. Liu, H. L. Chen, C. M. Ko and C. T. Chen, “Chemoselective Deacylation of Functionalized Esters Catalyzed by Dioxomolybdenum Dichloride,” Tetrahedron, Vol. 67, No. 5, 2011, pp. 872-876. doi:10.1016/j.tet.2010.12.024
[39] M.-C. Yan, Y.-N. Chen, H.-T. Wu, C.-C. Lin, C.-T. Chen and C.-C. Lin, “Removal of Acid-Labile Protecting Groups on Carbohydrates Using Water-Tolerant and Recoverable Vanadyl Triflate Catalyst,” The Journal of Organic Chemistry, Vol. 72, No. 1, 2007, pp. 299-302. doi:10.1021/jo061881g
[40] C. C. Lin, M. D. Jan, S. S. Weng, C. C. Lin and C. T. Chen, “O-Isopropylidenation of Carbohydrates Catalyzed by Vanadyl Triflate,” Carbohydrate Research, Vol. 341, No. 14, 2006, pp. 1948-1953. doi:10.1016/j.carres.2006.04.001
[41] T. Tsukida, M. Yoshida, K. Kurokawa, Y. Nakai, T. Achiha, T. Kiyoi and H. Kondo, “A Highly Practical Synthesis of Sulfated Lewis X: One-Pot, Two-Step Glycosylation Using ‘Armed/Disarmed’ Coupling and Selective Benzoylation and Sulfation,” The Journal of Organic Chemistry, Vol. 62, No. 20, 1997, pp. 6876-6881. doi:10.1021/jo970076m

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.