Share This Article:

α-Galactosyl Phytosphingosine 2,6’-Diamide as an Inducer of Invariant Natural Killer T Cell

Abstract Full-Text HTML Download Download as PDF (Size:602KB) PP. 55-59
DOI: 10.4236/ojmc.2013.33008    2,818 Downloads   4,850 Views  

ABSTRACT

Four a-galactosyl phytosphingosine 2,6’-diamide analogs were prepared from 2,6’-diamino a-galactosylphytosphingosine and the aromatic-bearing carboxylic acids. After purification with High Performance Liquid Chromatography, a flowcytometry for the four compounds for stimulation of human Va24+/Vb11+ NKT cell populations was carried out. Additional keto groups on the acyl chains of the 2,6’-diamide compound was associated with the enhanced stimulating effect.


Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Y. Huang, W. Chen, S. Tien, H. Huang, C. Yeh, K. Lin and C. Yu, "α-Galactosyl Phytosphingosine 2,6’-Diamide as an Inducer of Invariant Natural Killer T Cell," Open Journal of Medicinal Chemistry, Vol. 3 No. 3, 2013, pp. 55-59. doi: 10.4236/ojmc.2013.33008.

References

[1] T. Natori, M. Morita, K. Akimoto and Y. Koezuka, “Age- lasphins, Novel Antitumor and Immunostimulatory Cerebrosides from the Marine Sponge Agelas-Mauritianus,” Tetrahedron, Vol. 50, No. 9, 1994, pp. 2771-2784. doi:10.1016/S0040-4020(01)86991-X
[2] M. Morita, K. Motoki, K. Akimoto, T. Natori, T. Sakai, E. Sawa, K. Yamaji, Y. Koezuka, E. Kobayashi and H. Fukushima, “Structure-Activity Relationship of Alpha-Galactosylceramides Against B16-Bearing Mice,” Journal of Medicinal Chemistry, Vol. 38, No. 12, 1995, pp. 2176- 2187. doi:10.1021/jm00012a018
[3] M. Skold and S. M. Behar, “Role of CD1d-Restricted NKT Cells in Microbial Immunity,” Infection and Immunity, Vol. 71, No. 10, 2003, pp. 5447-5455. doi:10.1128/IAI.71.10.5447-5455.2003
[4] A. Bendelac, P. B. Savage and L. Teyton, “The Biology of NKT Cells,” Annual Review of Immunology, Vol. 25, 2007, pp. 297-336. doi:10.1146/annurev.immunol.25.022106.141711
[5] M. J. Smyth, N. Y. Crowe, Y. Hayakawa, K. Takeda, H. Yagita and D. Godfrey, “NKT Cells-Conductors of Tumor Immunity?” Current Opinion in Immunology, Vol. 14, No. 2, 2002, pp. 165-171. doi:10.1016/S0952-7915(02)00316-3
[6] K. J. L. Hammond and D. I. Godfrey, “NKT Cells: Potential Targets for Autoimmune Disease Therapy?” Tissue Antigens, Vol. 59, No. 5, 2002, pp. 353-363. doi:10.1034/j.1399-0039.2002.590501.x
[7] C. R. Berkers and H. Ovaa, “Immunotherapeutic Potential for Ceramide-Based Activators of iNKT Cells,” Trends in Pharmacological Sciences, Vol. 26, No. 5, 2005, pp. 252- 257. doi:10.1016/j.tips.2005.03.005
[8] J. Wojno, J. P. Jukes, H. Ghadbame, D. Shepherd, G. S. Bersa, V. Gerundolo and L. R. Cox, “Amide Analogs of CD1d Agonists Modulate iNKT-Cell-Mediated Cytokine Production,” ACS Chemical Biology, Vol. 7, No. 5, 2012, pp. 847-855. doi:10.1021/cb2005017
[9] J. Hunault, M. Diswall, J. C. Trison, V. Blet, J. Pocher, S. Marionneau-Lambt, T. Oullier, J.-Y. Douillard, S. Guillarme, C. Saluzzo, G. Dujardin, D. Jacqomin, J. Graton, J.-Y. Le Ouestel, M. Evain, J. Lebreton, D. Dubreuil, J. Le Pendu and M. Pipelier, “3-Fluoroand 3,3-Difluoro- 3,4-dideoxy-KRN7000 Analogues as New Potent Immunostimulator Agents: Total Synthesis and Biological Evaluation in Human Invariant Natural Killer T Cells and Mice,” Journal of Medicinal Chemistry, Vol. 55, No. 3, 2012, pp. 1227-1241. doi:10.1021/jm201368m
[10] N. Veerapen, E. A. Leadbetter, M. B. Brenner, L. R. Cox and G. S. Bersa, “Synthesis of a Novel-Galactosyl Ceramidic Hepatenated-Lipid Antigen, a Useful Tool in Demonstrating the Involvement of iNKT Cells in the Production of Antilipid Antibodies,” Bioconjugate Chemistry, Vol. 21, No. 4, 2010, pp. 741-747. doi:10.1021/bc9005255
[11] P. I. Kitov, J. M. Sadowska, G. Mulvey, G. D. Armstrong, H. Ling, N. S. Pannu, R. J. Read and D. R. Bundle, “Shiga-Like Toxins Are Neutralized by Tailored Multivalent Carbohydrate Ligands,” Nature, Vol. 403, No. 6770, 2000, pp. 669-672. doi:10.1038/35001095
[12] R. W. Franck and M. Tsuji, “?-C-Galactosyl Ceramides: Synthesis and Immunology,” Accounts of Chemical Research, Vol. 39, No. 10, 2006, pp. 692-701. doi:10.1021/ar050006z
[13] Y.-C. Huang, L.-W. Chiang, K.-S. Chang, W.-C. Su, Y.- H. Lin, K.-C. Jeng, K.-I. Lin, K.-Y. Liao, H.-L. Huang and C.-S. Yu, “Synthesis of Amino Core Compounds of Galactosyl Phytosyl Ceramide Analogs for Developing iNKT-Cell Inducers,” Molecules, Vol. 17, No. 3, 2012, pp. 3058-3081. doi:10.3390/molecules17033058
[14] M. Michieletti, A. Bracci, F. Compostella, G. De Libero, L. Mori, S. Fallarini, G. Lombard and L. Panza, “Synthesis of α-Galactosyl Ceramide (KRN7000) and Analogs Thereof via a Common Precursor and Their Preliminary Biological Assessment,” The Journal of Organic Chemistry, Vol. 73, No. 22, 2008, pp. 9192-9195. doi:10.1021/jo8019994
[15] J. Lopez-Sagaseta, J. E. Kung, P. B. Savage, J. Gumperz and E. J. Adams, “The Molecular Basis for Recognition of CD1d/Alpha-Galactosylceramide by a Human Non-V alpha 24 T Cell Receptor,” PLOS Biology, Vol. 10, No. 10, 2012, p. e1001412. doi:10.1371/journal.pbio.1001412
[16] D. G. Pellicci1, A. J. Clarke, O. Patel, T. Mallevaey, T. Beddoe, J. Le Nours, A. P. Uldrich, J. McCluskey, G. S. Besra, S. A. Porcelli, L. Gapin, D. I. Godfrey and J. Rossjohn, “Recognition of β-Linked Self Glycolipids Mediated by Natural Killer T Cell Antigen Receptors,” Nature Immunology, Vol. 12, No. 9, 2011, pp. 827-834. doi:10.1038/ni.2076

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.