Share This Article:

Chronic fatigue syndrome with history of severe infection combined altered blood oxidant status, and reduced potassium efflux and muscle excitability at exercise

Abstract Full-Text HTML Download Download as PDF (Size:539KB) PP. 98-105
DOI: 10.4236/ojim.2013.33023    2,918 Downloads   4,600 Views   Citations

ABSTRACT

It is documented that chronic fatigue syndrome (CFS) combines enhanced oxidative stress with altered muscle excitability. We hypothesized that these disorders may be accentuated when severe infection preceded the CFS symptoms. This case-control study compared 55 CFS patients to a matched control group of 40 healthy subjects. In twenty-five CFS patients, severe infection was reported within the three to seven month period preceding the CFS symptoms. The others had practiced sport at high level. Plasma concentrations of potassium, a marker of lipid peroxidation (thiobarbituric acid reactive substances, TBARS), and an endogenous antioxidant (reduced ascorbic acid, RAA) were measured. Action potential (M-wave) was evoked in the vastus lateralis muscle to explore the muscle membrane excitability. All subjects performed a maximal incremental cycling exercise. Compared to control subjects, all CFS patients presented an elevated resting TBARS level and, during and after exercise, an altered M-wave configuration. History of infection was associated with marked significant increase in resting TBARS level, enhanced M-wave alterations, and also reduced exercise-induced potassium efflux. The magnitude of exercise-induced M-wave alterations was proportional to the baseline TBARS level. Severe infection preceding CFS seems to constitute a stressor inducing altered blood oxidant status and a reduced muscle excitability at work.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Jammes, Y. , Guillaume Steinberg, J. , Guieu, R. and Delliaux, S. (2013) Chronic fatigue syndrome with history of severe infection combined altered blood oxidant status, and reduced potassium efflux and muscle excitability at exercise. Open Journal of Internal Medicine, 3, 98-105. doi: 10.4236/ojim.2013.33023.

References

[1] Holgate, S.T., Komaroff, A.L., Mangan, D. and Wessely, S. (2011) Viewpoint: Chronic FAtigue syndrome: Understanding a complex illness. Nature Reviews Neuroscience, 12, 539-544. doi:10.1038/nrn3087
[2] Prins, J.B., Van der Meer, J.W.M. and Bleijenberg, G. (2006) Chronic fatigue syndrome. Lancet, 367, 346-355. doi:10.1016/S0140-6736(06)68073-2
[3] Goodwin, L., White, P.D., Hotopf, M., Stansfeld, S.A. and Clark, C. (2011) Psychopathology and physical activity as predictors of chronic fatigue syndrome in the 1958 british birth cohort: A replication study of the 1946 and 1970 birth cohorts. Annals of Epidemiology, 21, 343-350. doi:10.1016/j.annepidem.2010.12.003
[4] Bassi, N., Amital, D., Amital, H., Doria, A. and Shoenfeld, Y. (2008) Chronic fatigue syndrome: characteristics and possible causes for its pathogenesis. The Israel Medical Association Journal, 10, 79-82.
[5] Evengard, B., Jonzon, E., Sandberg, A., Theorell, T. and Lindh, G. (2003) Differences between patients with chronic fatigue syndrome and with chronic fatigue at an infectious disease clinic in Stockolm, Sweden. Psychiatry and Clinical Neurosciences, 57, 361-368. doi:10.1046/j.1440-1819.2003.01132.x
[6] Naess, H., Sundal, E., Myhr, K.M. and Nyland, H.I. (2010) Postinfectious and chronic fatigue syndromes: Clinical experience from a tertiary-referral centre in Norway. In Vivo, 24, 185-188.
[7] Jammes, Y., Steinberg, J.G., Mambrini, O., Bregeon, F. and Delliaux, S. (2005) Chronic fatigue syndrome: Assessment of increased oxidative stress and altered muscle excitability in response to incremental exercise. Journal of Internal Medicine, 257, 299-310. doi:10.1111/j.1365-2796.2005.01452.x
[8] Jammes, Y., Steinberg, J.G., Delliaux, S. and Bregeon, F. (2009) Chronic fatigue syndrome combines increased exercise-induced oxidative stress and reduced cytokine and Hsp responses. Journal of Internal Medicine, 266, 196- 206. doi:10.1111/j.1365-2796.2009.02079.x
[9] Manuel y Keenoy, B., Moorkens, G., Vertommen, J. and De Leeuw, I. (2001) Antioxidant status and lipoprotein peroxidation in chronic fatigue syndrome. Life Sciences, 68, 2037-2049. doi:10.1016/S0024-3205(01)01001-3
[10] Vecchiet, J., Cipollone, F., Falasca, K., Mezzetti, A., Pizzigallo, E., Bucciarelli, T., De Laurentis, S., Affaitati, G., De Cesare, D. and Giamberardino, M.A. (2003) Relationship between musculoskeletal symptoms and blood markers of oxidative stress in patients with chronic fatigue syndrome. Neuroscience Letters, 335, 151-154. doi:10.1016/S0304-3940(02)01058-3
[11] Kennedy, G., Spence, V.A., McLaren, M., Hill, A., Underwood, C. and Belch, J.J. (2005) Oxidative stress levels are raised in chronic fatigue syndrome and are associated with clinical symptoms. Free Radical Biology & Medicine, 39, 584-589. doi:10.1016/j.freeradbiomed.2005.04.020
[12] Richards, R.S., Roberts, T.K., McGregor, N.R., Dunstan, R.H. and Butt, H.L. (2000) Blood parameters indicative of oxidative stress are associated with symptom expression in chronic fatigue syndrome. Redox Report, 5, 35-41.
[13] Jammes, Y., Steinberg, J.G. and Delliaux, S. (2012) Chronic fatigue syndrome: Acute infection and history of physical activity affect resting levels and response to ex- ercise of plasma oxidant/antioxidant status and heat shock proteins. Journal of Internal Medicine, 272, 74-84. doi:10.1111/j.1365-2796.2011.02488.x
[14] Juel, C. (2006) Muscle fatigue and reactive oxygen species. The Journal of Physiology, 576, 279-288.
[15] Jabr, R.I. and Cole, W.C. (1993) Alterations in electrical activity and membrane currents induced by intracellular oxygen-derived free radical stress in guinea pig ventricular myocytes. Circulation Research, 72, 1229-1244. doi:10.1161/01.RES.72.6.1229
[16] Luin, E., Giniatullin, R. and Sciancalepore, M. (2011) Effects of H2O2 on electrical membrane properties of skeletal myotubes. Free Radical Biology & Medicine, 50, 337-344. doi:10.1016/j.freeradbiomed.2010.11.015
[17] Sjogaard, G. (1990) Exercise-induced muscle fatigue: The significance of potassium. Acta Physiologica Scandinavica. Supplementum, 593, 1-63.
[18] Marcos, E. and Ribas, J. (1995) Kinetics of plasma potassium concentrations during exhausting exercise in trained and untrained men. European Journal of Applied Physiology, 71, 207-214. doi:10.1007/BF00854980
[19] Fulle, S., Belia, S., Vecchiet, J., Morabito, C., Vecchiet, L. and Fano, G. (2003) Modification of the functional capacity of sarcoplasmic reticulum membranes in patients suffering from chronic fatigue syndrome. Neuromuscular Disorders, 13, 479-484. doi:10.1016/S0960-8966(03)00042-7
[20] Chakraborty, S.P., Das, S., Chattopadhyay, S., Tripathy, S., Dash, S.K., Pramanik, P. and Roy, S. (2012) Staphylococcus aureus infection induced redox signalling and DNA fragmentation in T-lymphocytes: possible ameliorative role of nanoconjugated vancomycin. Toxicology Mechanisms and Methods, 22, 193-204. doi:10.3109/15376516.2011.629236
[21] Biagoli, M.C., Kaul, P., Singh, I. and Turner, R.B. (1999) The role of oxidative stress in rhinovirus induced elabo- ration of IL-8 by respiratory epithelial cells. Free Radical Biology & Medicine, 26, 454-462. doi:10.1016/S0891-5849(98)00233-0
[22] Choi, A.M., Knobil, K., Otterbein, S.L., Eastman, D.A. and Jacoby, D.B. (1996) Oxidant stress responses in influenza virus pneumonia: Gene expression and transcription factor activation. American Journal of Physiology, 271, L383-L391.
[23] Hosakote, Y.M., Liu, T., Castro, S.M., Garofalo, R.P. and Casola, A. (2009) Respiratory syncitial virus induces oxidative stress by modulating antioxidant status. American Journal of Respiratory Cell and Molecular Biology, 41, 348-357. doi:10.1165/rcmb.2008-0330OC
[24] Al-Nimer, M.S., Mahmood, M.M. and Khazaal, S.S. (2011) Nitrostative stress status during seasonal and pdmH1N1 infection in Iraq. The Journal of Infection in Developing Countries, 5, 863-867. doi:10.3855/jidc.1505
[25] Yamada, Y., Limmon, G.V., Zheng, D., Li, N., Li, L., Yin, L., Chow, V.T., Chen, J. and Engelward, B.P. (2012) Major shifts in the spatio-temporal distribution of lung antioxidant enzymes during influenza pneumonia. PLos One, 7, ArticleID: e31494. doi:10.1371/journal.pone.0031494
[26] Arnaud, S., Zattara-Hartmann, M.C., Tomei, C. and Jammes, Y. (1997) Correlation between muscle metabolism and changes in M-wave and surface electromyogram: Dynamic constant load leg exercise in untrained subjects. Muscle & Nerve, 20, 1197-1199. doi:10.1002/(SICI)1097-4598(199709)20:9<1197::AID-MUS20>3.0.CO;2-P
[27] Jammes, Y., Zattara-Hartmann, M.C., Caquelard, F., Arnaud, S. and Tomei, C. (1997) Electromyographic changes in vastus lateralis during dynamic exercise. Muscle & Nerve, 20, 247-249. doi:10.1002/(SICI)1097-4598(199702)20:2<247::AID-MUS21>3.0.CO;2-Z
[28] Wasserman, K. (1987) Determinants and detection of anaerobic threshold and consequences of exercise above it. Circulation, 76, V129-V139.
[29] Uchiyama, M. and Mihara, M. (1978) Determination of malonedialdehyde precursor in tissues by thiobarbituric acid test. Analytical Biochemistry, 86, 271-278. doi:10.1016/0003-2697(78)90342-1
[30] Maickel, R.P. (1960) A rapid procedure for the determination of adrenal ascorbic acid. Application of the Sullivan and Clarke method to tissues. Analytical Biochemistry, 1, 498-501. doi:10.1016/0003-2697(60)90063-4
[31] Mullis, R., Campbell, I.T., Wearden, A.J., Morriss, R.K. and Pearson, D.J. (1999) Prediction of peak oxygen up-take in chronic fatigue syndrome. British Journal of Sports Medicine, 33, 352-356. doi:10.1136/bjsm.33.5.352
[32] Sargent, C., Scroop, G.C., Nemeth, P.M., Burnet, R.B. and Buckle, J.D. (2002) Maximal oxygen uptake and lactate metabolism are normal in chronic fatigue syndrome. Medicine & Science in Sports & Exercise, 34, 51-56. doi:10.1097/00005768-200201000-00009
[33] Echtay, K.S., Roussel, D., St-Pierre, J., Jekabsons, M.B., Cadenas, S., Stuart, J.A., Harper, J.A., Roebuck, S.J., Morrison, A., Pickering, S., Clapham, J.C. and Brand, M.D. (2002) Superoxide activates mitochondrial uncoupling proteins. Nature, 415, 96-99. doi:10.1038/415096a
[34] Amel Kashipaz, M.R., Swinden, D., Todd, I. and Powell, R.J. (2003) Normal production of inflammatory cytokines in chronic fatigue and fibromyalgia syndromes determined by intracellular cytokine staining in short-term cultured blood mononuclear cells. Clinical & Experimental Immunology, 132, 360-365. doi:10.1046/j.1365-2249.2003.02149.x
[35] Vollmer-Conna, U., Cameron, B., Hadzi-Pavlovic, D., Singletary, K., Davenport, T., Vernon, S., Reeves, W.C., Hickie, I., Wakefield, D., Lloyd, A.R. (2007) Dubbo Infective Outcomes Study Group. Postinfective fatigue syndrome is not associated with altered cytokine production. Clinical Infectious Diseases, 45, 732-735. doi:10.1086/520990
[36] Gaab, J., Rohleder, N., Heitz, V., Engert, V., Schad, T., Schürmeyer, T.H. and Ehlert, U. (2005) Stress-induced changes in LPS-induced pro-inflammatory cytokine production in chronic fatigue syndrome. Pychoneuroendocrinology, 30, 188-198.
[37] Chao, C.C., Janoff, E.N., Hu, S.X., Thoma, K., Gallagher, M., Tsang, M. and Peterson, P.K. (1991) Altered cytokine release in peripheral blood mononuclear cell cultures from patients with the chronic fatigue syndrome. Cytokine, 3, 292-298. doi:10.1016/1043-4666(91)90497-2

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.