Influence of Fatty Acid Profiles during Supercritical Transesterification of Conventional and Non-Conventional Feedstocks: A Review

Abstract

In this study, the influence of fatty acids of both conventional and non-conventional oils in supercritical transesterification method has been reviewed. Literature on oils such as moringa oleifera, manketti, croton megalocarpus, palm and soybean has been reviewed to establish an understanding of the supercritical transesterification that employed methanol as alcohol. This study reveals that lower yield of methyl esters is observed when higher temperatures are employed in oils that are highly dominated with polyunsaturated fatty acids, such as manketti and croton megalocarpus. And the reason is that poly-unsaturated fatty acids that are present in the oils decompose easily at higher temperatures and thus reduce the methyl esters yield.

Share and Cite:

G. Kafuku and M. Mbarawa, "Influence of Fatty Acid Profiles during Supercritical Transesterification of Conventional and Non-Conventional Feedstocks: A Review," American Journal of Analytical Chemistry, Vol. 4 No. 9, 2013, pp. 469-475. doi: 10.4236/ajac.2013.49060.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] U. Rashid and F. Anwar, “Production of Biodiesel through Optimized Alkaline-Catalyzed Transesterification of Rapeseed Oil,” Fuel, Vol. 87, No. 3, 2008, pp. 265-273. doi:10.1016/j.fuel.2007.05.003
[2] Z. Helwani, et al., “Solid Heterogeneous Catalysts for Transesterification of Triglycerides with Methanol: A Review,” Applied Catalysis A: General, Vol. 363, No. 1-2, 2009, pp. 1-10. doi:10.1016/j.apcata.2009.05.021
[3] K. Noiroj, et al., “A Comparative Study of KOH/Al2O3 and KOH/NaY Catalysts for Biodiesel Production via Transesterification from Palm Oil,” Renewable Energy, Vol. 34, No. 4, 2009, pp. 1145-1150. doi:10.1016/j.renene.2008.06.015
[4] E.-S. Song, et al., “Transesterification of RBD Palm Oil Using Supercritical Methanol,” The Journal of Supercritical Fluids, Vol. 44, No. 3, 2008, pp. 356-363. doi:10.1016/j.supflu.2007.09.010
[5] K. T. Tan, et al., “An Optimized Study of Methanol and Ethanol in Supercritical Alcohol Technology for Biodiesel Production,” The Journal of Supercritical Fluids, Vol. 53, No. 1-3, 2010, p. 82-87. doi:10.1016/j.supflu.2009.12.017
[6] G. Kafuku, et al., “Croton Megalocarpus Oil: A Feasible Non-Edible Oil Source for Biodiesel Production,” Bioresource Technology, Vol. 101, No. 18, 2010, pp. 7000-7004. doi:10.1016/j.biortech.2010.03.144
[7] H. J. Berchmans and S. Hirata, “Biodiesel Production from Crude Jatropha curcas L. Seed Oil with a High Content of Free Fatty Acids,” Bioresource Technology, Vol. 99, No. 6, 2008, pp. 1716-1721. doi:10.1016/j.biortech.2007.03.051
[8] J. M. Dias, M. C. M. Alvim-Ferraz and M. F. Almeida, “Comparison of the Performance of Different Homogeneous Alkali Catalysts during Transesterification of Waste and Virgin Oils and Evaluation of Biodiesel Quality,” Fuel, Vol. 87, No. 17-18, 2008, pp. 3572-3578. doi:10.1016/j.fuel.2008.06.014
[9] T. Eevera, K. Rajendran and S. Saradha, “Biodiesel Production Process Optimization and Characterization to Assess the Suitability of the Product for Varied Environmental Conditions,” Renewable Energy, Vol. 34, No. 3, 2009, pp. 762-765. doi:10.1016/j.renene.2008.04.006
[10] G. Guan, K. Kusakabe and S. Yamasaki, “Tri-Potassium Phosphate as a Solid Catalyst for Biodiesel Production from Waste Cooking Oil,” Fuel Processing Technology, Vol. 90, No. 4, 2009, pp. 520-524. doi:10.1016/j.fuproc.2009.01.008
[11] M. Kouzu, et al., “Calcium Oxide as a Solid Base Catalyst for Transesterification of Soybean Oil and Its Application to Biodiesel Production,” Fuel, Vol. 87, No. 12, 2008, pp. 2798-2806. doi:10.1016/j.fuel.2007.10.019
[12] M. Zabeti, W. M. A. W. Daud and M. K. Aroua, “Optimization of the Activity of CaO/Al2O3 Catalyst for Biodiesel Production Using Response Surface Methodology,” Applied Catalysis A: General, Vol. 366, No. 1, 2009, pp. 154-159. doi:10.1016/j.apcata.2009.06.047
[13] J. Kansedo, K. T. Lee and S. Bhatia, “Biodiesel Production from Palm Oil via Heterogeneous Transesterification,” Biomass and Bioenergy, Vol. 33, No. 2, 2009, pp. 271-276. doi:10.1016/j.biombioe.2008.05.011
[14] K. G. Georgogianni, et al., “Transesterification of Soybean Frying Oil to Biodiesel Using Heterogeneous Catalysts,” Fuel Processing Technology, Vol. 90, No. 5, 2009, pp. 671-676. doi:10.1016/j.fuproc.2008.12.004
[15] G. Arzamendi, et al., “Synthesis of Biodiesel with Heterogeneous NaOH/Alumina Catalysts: Comparison with Homogeneous NaOH,” Chemical Engineering Journal, Vol. 134, No. 1-3, 2007, pp. 123-130. doi:10.1016/j.cej.2007.03.049
[16] M. C. G. Albuquerque, et al., “CaO Supported on Mesoporous Silicas as Basic Catalysts for Transesterification Reactions,” Applied Catalysis A: General, Vol. 334, No. 1-2, 2008, pp. 35-43. doi:10.1016/j.apcata.2007.09.028
[17] A. Demirbas, “Biodiesel from Vegetable Oils via Transesterification in Supercritical Methanol,” Energy Conversion and Management, Vol. 43, No. 17, 2002, pp. 2349-2356. doi:10.1016/S0196-8904(01)00170-4
[18] J.-Z. Yin, M. Xiao and J.-B. Song, “Biodiesel from Soybean Oil in Supercritical Methanol with Co-Solvent,” Energy Conversion and Management, Vol. 49, No. 5, 2008, pp. 908-912. doi:10.1016/j.enconman.2007.10.018
[19] U. Rashid, et al., “Moringa Oleifera Oil: A Possible Source of Biodiesel,” Bioresource Technology, Vol. 99, No. 17, 2008, pp. 8175-8179. doi:10.1016/j.biortech.2008.03.066
[20] M. M. Gui, K. T. Lee and S. Bhatia, “Feasibility of Edible Oil vs. Non-Edible Oil vs. Waste Edible Oil as Biodiesel Feedstock,” Energy, Vol. 33, No. 11, 2008, pp. 1646-1653. doi:10.1016/j.energy.2008.06.002
[21] F. Anwar, et al., “Moringa Oleifera: A Food Plant with Multiple Medicinal Uses,” Phytotherapy Research, Vol. 21, No. 1, 2007, pp. 17-25. doi:10.1002/ptr.2023
[22] A. Sengupta and M. P. “Gupta, Studies on the Seed Fat Composition of Moringacea Family,” Fette, Seifen, Anstrichm, Vol. 72, No. 1, 1970, pp. 6-10. doi:10.1002/lipi.19700720103
[23] G. Kafuku, et al., “Heterogeneous Catalyzed Biodiesel Production from Moringa Oleifera Oil,” Fuel Processing Technology, Vol. 91, No. 11, 2010, pp. 1525-1529. doi:10.1016/j.fuproc.2010.05.032
[24] Kafuku, G. and M. Mbarawa, “Biodiesel Production from Croton Megalocarpus Oil and Its Process Optimization,” Fuel, Vol. 89, No. 9, 2010, pp. 2556-2560. doi:10.1016/j.fuel.2010.03.039
[25] B. Aliyu, B. Agnew and S. Douglas, “Croton Megalocarpus (Musine) Seeds as a Potential Source of Bio-Diesel,” Biomass and Bioenergy, Vol. 34, No. 10, 2010, pp. 1495-1499. doi:10.1016/j.biombioe.2010.04.026
[26] M. Athar and S. M. Nasir, “Taxonomic Perspective of Plant Species Yielding Vegetable Oils Used in Cosmetics and Skin Care Products,” African Journal of Biotechnology, Vol. 4, No. 1, 2005, pp. 36-44.
[27] J. H. Pratt, et al., “Malawi Agroforestry Extension Project Marketing & Enterprise Program, Main Report,” Malawi Agroforestry, 2002, p. 139.
[28] A. Demirbas, “Biodiesel: A Realistic Fuel Alternative for Diesel Engines,” Springer Verlag, Berlin, 2008.
[29] C.-H. Chen, et al., “Biodiesel Production from Supercritical Carbon Dioxide Extracted Jatropha oil Using Subcritical Hydrolysis and Supercritical Methylation,” The Journal of Supercritical Fluids, Vol. 52, No. 2, 2010, pp. 228-234. doi:10.1016/j.supflu.2009.12.010
[30] G. Knothe, et al., “The Biodiesel Handbook,” AOCS Press, Champaign, 2005.
[31] A. Demirbas, “Biodiesel Production from Vegetable Oils via Catalytic and Non-Catalytic Supercritical Methanol Transesterification Methods,” Progress in Energy and Combustion Science, Vol. 31, No. 5-6, 2005, pp. 466-487. doi:10.1016/j.pecs.2005.09.001
[32] J. Van Gerpen, et al., “Biodiesel Production Technology. Report for the National Renewable Energy Laboratory,” Department of Energy, Washington DC, 2004, pp. 30-42.
[33] A. Keskin, M. Gürü and D. Altiparmak, “Biodiesel Production from Tall Oil with Synthesized Mn and Ni Based Additives: Effects of the Additives on Fuel Consumption and Emissions,” Fuel, Vol. 86, No. 7-8, 2007, pp. 1139-1143. doi:10.1016/j.fuel.2006.10.021
[34] A. Kumar Tiwari, A. Kumar and H. Raheman, “Biodiesel Production from Jatropha Oil (Jatropha curcas) with High Free Fatty Acids: An Optimized Process,” Biomass and Bioenergy, Vol. 31, No. 8, 2007, pp. 569-575. doi:10.1016/j.biombioe.2007.03.003
[35] X. Meng, G. Chen and Y. Wang, “Biodiesel Production from Waste Cooking Oil via Alkali Catalyst and Its Engine Test,” Fuel Processing Technology, Vol. 89, No. 9, 2008, pp. 851-857. doi:10.1016/j.fuproc.2008.02.006
[36] C.-H. Chen, W.-H. Chen, C.-M. J. Chang, S.-M. Lai and C.-H. Tu, “Biodiesel Production from Supercritical Carbon Dioxide Extracted Jatropha Oil Using Subcritical Hydrolysis and Supercritical Methylation,” The Journal of Supercritical Fluids, Vol. 52, No. 2, 2010, pp. 228-234. doi:10.1016/j.supflu.2009.12.010
[37] C. Zhou, et al., “Continuous Production of Biodiesel from Soybean Oil Using Supercritical Methanol in a Vertical Tubular Reactor: I. Phase Holdup and Distribution of Intermediate Product along the Axial Direction,” Chinese Journal of Chemical Engineering, Vol. 18, No. 4, 2010, pp. 626-629. doi:10.1016/S1004-9541(10)60266-2
[38] S. Hawash, et al., “Biodiesel Fuel from Jatropha Oil via Non-Catalytic Supercritical Methanol Transesterification,” Fuel, Vol. 88, No. 3, 2009, pp. 579-582. doi:10.1016/j.fuel.2008.09.007
[39] K. T. Tan, K. T. Lee and A. R. Mohamed, “Effects of Free Fatty Acids, Water Content and Co-Solvent on Biodiesel Production by Supercritical Methanol Reaction,” The Journal of Supercritical Fluids, Vol. 53, No. 1-3, 2010, pp. 88-91. doi:10.1016/j.supflu.2010.01.012
[40] J.-S. Lee and S. Saka, “Biodiesel Production by Heterogeneous Catalysts and Supercritical Technologies,” Bioresource Technology, Vol. 101, No. 19, 2010, pp. 7191-7200. doi:10.1016/j.biortech.2010.04.071
[41] A. Demirbas, “Biodiesel Production via Non-Catalytic SCF Method and Biodiesel Fuel Characteristics,” Energy Conversion and Management, Vol. 47, No. 15-16, 2006, pp. 2271-2282. doi:10.1016/j.enconman.2005.11.019
[42] R. Alenezi, et al., “Esterification Kinetics of Free Fatty Acids with Supercritical Methanol for Biodiesel Production,” Energy Conversion and Management, Vol. 51, No. 5, 2010, pp. 1055-1059. doi:10.1016/j.enconman.2009.12.009
[43] D. Kusdiana and S. Saka, “Methyl Esterification of Free Fatty Acids of Rapeseed Oil as Treated in Supercritical Methanol,” Journal of Chemical Engineering of Japan, Vol. 34, No. 3, 2001, pp. 383-387. doi:10.1252/jcej.34.383
[44] A. Demirbas, “Comparison of Transesterification Methods for Production of Biodiesel from Vegetable Oils and Fats,” Energy Conversion and Management, Vol. 49, No. 1, 2008, pp. 125-130. doi:10.1016/j.enconman.2007.05.002
[45] A. Demirbas, “Studies on Cottonseed Oil Biodiesel Prepared in Non-Catalytic SCF Conditions,” Bioresource Technology, Vol. 99, No. 5, 2008, pp. 1125-1130. doi:10.1016/j.biortech.2007.02.024
[46] H. He, T. Wang and S. Zhu, “Continuous Production of Biodiesel Fuel from Vegetable Oil Using Supercritical Methanol Process,” Fuel, Vol. 86, No. 3, 2007, pp. 442-447. doi:10.1016/j.fuel.2006.07.035
[47] A. Demirbas, “Biodiesel from Sunflower Oil in Supercritical Methanol with Calcium Oxide,” Energy Conversion and Management, Vol. 48, No. 3, 2007, pp. 937-941. doi:10.1016/j.enconman.2006.08.004
[48] Joelianingsih, et al., “Biodiesel Fuels from Palm Oil via the Non-Catalytic Transesterification in a Bubble Column Reactor at Atmospheric Pressure: A Kinetic Study,” Renewable Energy, Vol. 33, No. 7, 2008, pp. 1629-1636. doi:10.1016/j.renene.2007.08.011
[49] K. T. Tan and K. T. Lee, “A Review on Supercritical Fluids (SCF) Technology in Sustainable Biodiesel Production: Potential and Challenges,” Renewable and Sustainable Energy Reviews, Vol. 15, No. 5, 2011, pp. 2452-2456. doi:10.1016/j.rser.2011.02.012
[50] M. N. Varma, P. A. Deshpande and G. Madras, “Synthesis of Biodiesel in Supercritical Alcohols and Supercritical Carbon Dioxide,” Fuel, Vol. 89, No. 7, 2010, pp. 1641-1646. doi:10.1016/j.fuel.2009.08.012
[51] K. T. Tan, K. T. Lee and A. R. Mohamed, “Production of FAME by Palm Oil Transesterification via Supercritical Methanol Technology,” Biomass and Bioenergy, Vol. 33, No. 8, 2009, pp. 1096-1099. doi:10.1016/j.biombioe.2009.04.003
[52] G. Kafuku, et al., “Noncatalytic Biodiesel Fuel Production from Croton megalocarpus Oil,” Chemical Engineering & Technology, Vol. 34, No. 11, 2011, pp. 1827-1834. doi:10.1002/ceat.201100204
[53] G. Kafuku, “Production of Biodiesel from Non-Edible Oils,” Tshwane University of Technology, Pretoria, 2011.
[54] G. Kafuku, et al., “Heterogeneous Catalyzed Biodiesel Production from Moringa oleifera Oil,” Fuel Processing Technology, Vol. 91, No. 11, 2010, pp. 1525-1529. doi:10.1016/j.fuproc.2010.05.032
[55] H. Imahara, et al., “Thermal Stability of Biodiesel in Supercritical Methanol,” Fuel, Vol. 87, No. 1, 2008, pp. 1-6. doi:10.1016/j.fuel.2007.04.003
[56] J. Xin, H. Imahara and S. Saka, “Oxidation Stability of Biodiesel Fuel as Prepared by Supercritical Methanol,” Fuel, Vol. 87, No. 10-11, 2008, pp. 1807-1813. doi:10.1016/j.fuel.2007.12.014

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.