Share This Article:

Mechanical Properties of Composite SiNx/DLC Films Prepared by Filtered Cathodic Arc of Graphite Incorporated with RF Sputtering of Silicon Nitride

Abstract Full-Text HTML Download Download as PDF (Size:1191KB) PP. 564-571
DOI: 10.4236/msa.2013.49069    3,496 Downloads   5,109 Views  

ABSTRACT

Composite SiNx/DLC films were deposited on Si substrate by RF magnetron sputtering of silicon nitride (Si3N4) target simultaneously with filtered cathode arc (FCA) of graphite. The RF power was fixed at 100 W whereas the arc currents of FCA were 20, 40, 60 and 80 A. The effects of arc current on the structure, surface roughness, density and mechanical properties of SiNx/DLC films were investigated. The results show that the arc current in the studied range has effect on the structure, surface roughness, density and mechanical properties of composite SiNx/DLC films. The composite SiNx/DLC films show the sp3 content between 53.5% and 66.7%, density between 2.54 and2.98 g/cm3, stress between 1.7 and 2.2 GPa, and hardness between 35 and 51 GPa. Furthermore, it was found that the density, stress and hardness correlate linearly with the sp3 content for composite SiNx/DLC films.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

P. Bunnak, Y. Gong, S. Limsuwan, A. Pokaipisit and P. Limsuwan, "Mechanical Properties of Composite SiNx/DLC Films Prepared by Filtered Cathodic Arc of Graphite Incorporated with RF Sputtering of Silicon Nitride," Materials Sciences and Applications, Vol. 4 No. 9, 2013, pp. 564-571. doi: 10.4236/msa.2013.49069.

References

[1] B. Bhushan, “Chemical, Mechanical and Tribological Characterization of Ultra-Thin and Hard Amorphous Carbon Coatings as Thin as 3.5 nm: Recent Developments,” Diamond and Related Materials, Vol. 8, No. 11, 1999 pp. 1985-2015. doi:10.1016/S0925-9635(99)00158-2
[2] S. Zhang, Y. Fu, H. Du, X. T. Zeng and Y. C. Liu, “Magnetron Sputtering of Nancomposite (Ti,Cr)CN/DLC Coatings,” Surface & Coatings Technology, Vol. 162, No. 1, 2002, pp. 42-48. doi:10.1016/S0257-8972(02)00561-3
[3] N. Paik, “Raman and XPS Studies of DLC Films Prepared by a Magnetron Sputter Type Negative Ion Source,” Surface & Coatings Technology, Vol. 200, No. 7, 2005, pp. 2170-2174. doi:10.1016/j.surfcoat.2004.08.073
[4] X. Yu, C.-B. Wang, Y. Liu and D.-Y. Yu, “A Study of Hard Diamond-Like Carbon Films in Mid-Frequency Dual-Magnetron Sputtering,” Diamond and Related Materials, Vol. 15, No. 9, 2006, pp. 1223-1227. doi:10.1016/j.diamond.2005.09.040
[5] A. S. Hamdy, “Electrochemical Behavior of DiamondLike-Carbon Coatings Deposited on AlTiC(Al2O3+TiC) Ceramic Composite Substrate in HCL Solution,” Electrochimica Acta, Vol. 56, No. 3, 2011, pp. 1554-156. doi:10.1016/j.electacta.2010.11.021
[6] J. Robertson, “Diamond-Like Amorphous Carbon,” Materials Science and Engineering R, Vol. 37, No. 4-6, 2002, pp. 129-281. doi:10.1016/S0927-796X(02)00005-0
[7] W. G. Cui, Q. E. Lai, L. Zhang and F. M. Wang, “Quantitative Measurements of sp3 Content in DLC Films with Raman Spectroscopy,” Surface & Coatings Technology, Vol. 205, No. 7, 2010, pp. 1995-1999. doi:10.1016/j.surfcoat.2010.08.093
[8] R. Crombez, J. McMinis, V. S. Veerasamy and W. Shen, “Experimental Study of Mechanical Properties and Scratch Resistance of Ultra-Thin Diamond-Like-Carbon (DLC) Coatings Deposited on Glass,” Tribology International, Vol. 44, No. 1, 2011, pp. 55-62. doi:10.1016/j.triboint.2010.08.004
[9] M. Fujii, M. A. Kumar and A. Yoshida, “Influence of DLC Coating Thickness on Tribological Characteristics under Sliding Rolling Contact condition,” Tribology International, Vol. 44, No. 10, 2011, pp. 1289-1295. doi:10.1016/j.triboint.2010.07.005
[10] A. C. Ferrari, “Diamond-Like Carbon for Magnetic Storage Disk,” Surface & Coatings Technology, Vol. 180-181, 2004, pp. 190-206. doi:10.1016/j.surfcoat.2003.10.146
[11] C. Casiraghi, J. Robertson and A. C. Ferrari, “DiamondLike Carbon for Data and Beer Storage,” Materials Today, Vol. 10, No. 1-2, 2007, pp. 44-53. doi:10.1016/S1369-7021(06)71791-6
[12] M. Zhong, C. Zhang, J. Luo and X. Lu, “The Protective Properties of Ultra-Thin Diamond Like Carbon Films for High Density Magnetic Storage Devices,” Applied Surface Science, Vol. 256, No. 1, 2009, pp. 322-328. doi:10.1016/j.apsusc.2009.08.023
[13] C. Casiraghi, A.C. Ferrari, R. Ohr, D. Chu and J. Robertson, “Surface Properties of Ultra-Thin Tetrahedral Amorphous Carbon Films for Magnetic Storage Technology,” Diamond and Related Materials, Vol. 13, No., 2004, pp. 1416-1421. doi:10.1016/j.diamond.2003.10.086
[14] B. Druz, Y. Yevtuknov and I. Zaritsky, “Diamond-Like Carbon Overcoat for TFMH Using Filtered Cathodic Arc System with Ar-Assisted Arc Discharge,” Diamond and Related, Vol. 14, No. 9, 2005, pp. 1508-1516. doi:10.1016/j.diamond.2005.04.007
[15] G. G. Wang, H. Y. Zhang, H. F. Zhou, X. P. Kuang, Q. B. Wu, H. B. Zuo, J. C. Han and H. T. Ma, “Effect of ECR Assisted Microwave Plasma Nitriding Treatment on the Microstructure Characteristics of FCVA Deposited Ultra-Thin ta-C Films for High Density Magnetic Storage Application,” Applied Surface Science, Vol. 256, No. 10, 2010, pp. 3024-3030. doi:10.1016/j.apsusc.2009.11.067
[16] P. Siemroth, J. Berthold, B. Petereit and H. Schneider, “Hilgers, A New Generation of Filtered Arc Sources for Ultrathin Top Coats on Magnetic Hard Disks,” Surface & Coatings Technology, Vol. 188-189, 2004, pp. 684-690. doi:10.1016/j.surfcoat.2004.07.004
[17] H. Tanoue, M. Kamiya, S. Oke, Y. Suda, H. Takikawa, M. Taki, N. Tsuji, T. Ishikawa, H. Yasui, S. Temei and H. Takahashi, “Effect of Gas Introduction Position on Substrate Etching by Means of Ar-Dominated Graphite-Cathodic-Arc Plasma Beam in μT-FAD,” Thin Solid Films, Vol. 518, No. 13, 2010, pp. 3546-3550. doi:10.1016/j.tsf.2009.11.050
[18] G. G. Wang, X. P. Kuang, H. Y. Zhang, C. Zhu, J. C. Han, H. B. Zuo and H. T. Ma, “Silicon Nitride Gradient Film as the Underlayer of Ultra-Thin Tetrahedral Amorphous Carbon Overcoat for Magnetic Recording Slider,” Materials Chemistry and Physics, Vol. 13, No. 1-2, 2011, pp. 127-131. doi:10.1016/j.matchemphys.2011.07.077
[19] F. X. Liu, K. L. Yao and Z. L. Liu, “Substrate Bias Effect on Structure of Tetrahedral Amorphous Carbon Films by Raman Spectroscopy,” Diamond and Related, Vol. 16, No. 9, 2007, pp. 1746-1751. doi:10.1016/j.diamond.2007.06.007
[20] F. X. Liu and Z. L. Wang, “Thickness Dependence of the Structure of Diamond-Like Carbon Films by Raman Spectroscopy,” Surface & Coatings Technology, Vol. 203, No. 13, 2009, pp. 1829-1832. doi:10.1016/j.surfcoat.2009.01.008
[21] M. Azzi, P. Amirault, M. Paquette, J. E. Klemberg-Sapieha and L. Martinu, “Corrosion Performance and Mechanical Stability of 316 L/DLC Coating System: Role of Interlayers,” Surface & Coatings Technology, Vol. 204, No. 24, 2010, pp. 3986-3994. doi:10.1016/j.surfcoat.2010.05.004
[22] J. Filik, “Raman Spectroscopy: A Simple, Non-Destructive way to Characterise Diamond and Diamond-Like Materials,” Spectroscopy Europe, Vol. 17, No. 5, 2005, pp. 10-17.
[23] A. C. Ferrari, A. Libassi, B. K. Tanner, V. Stolojan, J. Yuan, L. M. Brown, S. E. Rodil, B. Kleinsorge and J. Robertson, “Density, sp3 Fraction, and Cross-Sectional Structure of Amorphous Carbon films Determined by X-Ray Reflectivity and Electron Energy-Loss Spectroscopy,” Physical Review B, Vol. 62, No. 16, 2000, pp. 11089-11103. doi:10.1103/PhysRevB.62.11089
[24] S. Xu, B. K. Tay, H. S. Tan, L. Zhong, Y. Q. Tu, S. R. R. Silva and W. I. Milne, “Properties of Carbon Ion Deposited Tetrahedral Amorphous Carbon Films as a Function of Ion Energy,” Journal of Applied Physics, Vol. 79, No. 9, 1996, pp. 7234-7240. doi:10.1063/1.361440
[25] X. Li and B. Bhushan, “A Review of Nanoindentation Continuous Stiffness Measurement Technique and Its Applications,” Mater Character, Vol. 48, 2002, pp. 11-36. doi:10.1016/S1044-5803(02)00192-4
[26] A. C. Ferrari and J. Robertson, “Interpretation of Raman Spectra of Disordered and Amorphous Carbon,” Physical Review B, Vol. 61, No. 20, 2000, pp. 14095-14107. doi:10.1103/PhysRevB.61.14095
[27] C. K. Park, S. M. Chang, H. S. Uhm, S. H. Seo and J. S. Park, “XPS and XRR Studies on Microstructures and Interfaces of DLC Films Deposited by FCVA Method,” Thin Solid Films, Vol. 420-421, 2002, pp. 235-240. doi:10.1016/S0040-6090(02)00750-2
[28] N. Paik, “High-Density DLC Films Prepared Using a Magnetron Sputter Type Negative Ionsource,” Diamond and Related, Vol. 14, No. 2, 2005, pp. 196-200. doi:10.1016/j.diamond.2004.11.005
[29] K. Holmberg, H. Ronkainen, A. Laukkanen, K. Wallin, S. Hogmark, S. Jacobson, U. Wiklund, R. M. Souza and P. Stahle, “Residual Stresses in TiN, DLC and MoS2 Coated Surfaces with Regard to Their Tribological Fracture Behavior,” Wear, Vol. 267, No. 12, 2009, pp. 2142-2156. doi:10.1016/j.wear.2009.01.004

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.