A Single-Step Process for Preparing Supercapacitor Electrodes from Carbon Nanotubes
Rui Shi, Lu Jiang, Chunxu Pan
.
DOI: 10.4236/snl.2011.11003   PDF    HTML     8,724 Downloads   19,733 Views   Citations

Abstract

This paper introduces an easy single-step process for preparing the supercapacitor electrode from carbon nanotubes (CNTs) which were directly grown on a nickel foam framework by a chemical vapor deposition (CVD) technique. Due to the hierarchical porous structure and robust CNT-metal contacts, the present electrode exhibits better capacitive performance and lower internal resistance than the regular transfer method. Its specific capacitance of 25 F/g is 127 % higher than the value of the electrode prepared by the transfer method. This work proposes a simple, effective and eco-nomical approach for preparing a supercapacitor electrode without additional catalysts and pre- or post-treatments.

Share and Cite:

R. Shi, L. Jiang and C. Pan, "A Single-Step Process for Preparing Supercapacitor Electrodes from Carbon Nanotubes," Soft Nanoscience Letters, Vol. 1 No. 1, 2011, pp. 11-15. doi: 10.4236/snl.2011.11003.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R. Kotz and M. Carlen, “Principles and Applications of Electrochemical Capacitors,” Electrochimica Acta, Vol. 45, No. 15, May 2000, pp. 2483-2498. doi:10.1016/S0013-4686(00)00354-6
[2] E. Frackowiak, K. Metenier, V. Bertagna and F. Beguin, “Supercapacitor Electrodes from Multiwalled Carbon Nanotubes,” Applied Physics Letters, Vol. 77, No. 15, October 2000, pp. 2421-2423. doi:10.1063/1.1290146
[3] C. Niu, E. K. Sichel, R. Hoch, D. Moy and H. Tennent, “High Power Electrochemical Capacitors Based on Carbon Nanotube Electrodes,” Applied Physics Letters, Vol. 70, No. 11, March 1997, pp. 1480-1482. doi:10.1063/1.118568
[4] H. Zhang, G. P. Cao and Y. S. Yang, “Using a Cut-Paste Method to Prepare a Carbon Nanotube Fur Electrode,” Nanotechnology, Vol. 18, No. 19, May 2007, p. 195607. doi:10.1088/0957-4484/18/19/195607
[5] C. G. Liu, M. Liu, F. Li and H. M. Cheng, “Frequency Response Characteristic of Single-Walled Carbon Nanotubes as Supercapacitor Electrode Material,” Applied Physics Letters, Vol. 92, No. 14, April 2008, pp. 143108(3).
[6] S. Talapatra, S. Kar, S. K. Pal, R. Vajtai, L. Ci, P. Victor, M. M. Shaijumon, S. Kaur, O. Nalamasu and P. M. Ajayan, “Direct growth of aligned carbon nanotubes on bulk metals,” Nature Nanotechnology, Vol. 1, No. 2, November 2006, pp. 112-116. doi:10.1038/nnano.2006.56
[7] C. Emmenegger, P. Mauron, A. Zuttel, C. Nutzenadel, A. Schneuwly, R. Gallay and L. Schlapbach, “Carbon Nanotube Synthesized on Metallic Substrates,” Applied Surface Science, Vol. 162-163, No. 1, August 2000, pp. 452-456. doi:10.1016/S0169-4332(00)00232-4
[8] B. J. Yoon, S. H. Jeong, K. H. Lee, H. S. Kim, C. G. Park and J. H. Han, “Electrical Properties of Electrical Double layer Capacitors with Integrated Carbon Nanotube Electrodes,” Chemical Physics Letters, Vol. 388, No. 1-3, April 2004, pp. 170-174. doi:10.1016/j.cplett.2004.02.071
[9] H. Zhang, G. P. Cao, Z. Y. Wang, Y. S. Yang and Z. N. Gu, “Electrochemical Capacitive Properties of Carbon Nanotube Arrays Directly Grown on Glassy Carbon and Tantalum Foils,” Carbon Vol. 46, No. 5, April 2008, pp. 822-824. doi:10.1016/j.carbon.2008.02.015
[10] D. Park, Y. H. Kim and J. K. Lee, “Synthesis of Carbon Nanotubes on Metallic Substrates by a Sequential Combination of PECVD and Thermal CVD,” Carbon, Vol. 41, No. 5, April 2003, pp. 1025-1029. doi:10.1016/S0008-6223(02)00432-3
[11] L. J. Gao, A. P. Peng, Z. Y. Wang, H. Zhang, Z. J. Shi, Z. N. Gu, G. P. Cao and B. Z. Ding, “Growth of Aligned Carbon Nanotube Arrays on Metallic Substrate and Its Application to Supercapacitors,” Solid State Communications, Vol. 146, No. 9-10, June 2008, pp. 380-383. doi:10.1016/j.ssc.2008.03.034
[12] J. R. McDonough, J. W. Choi, Y. Yang, F. L. Mantia, Y. G. Zhang and Y. Cui, “Carbon Nanofiber Supercapacitors with Large Areal Capacitances,” Applied Physics Letters, Vol. 95, No. 24, December 2009, pp. 243109(3).
[13] A. G. Pandolfo and A. F. Hollenkamp, “Carbon Properties and Their Role in Supercapacitors,” Journal of Power Sources, Vol 157, No. 1, June 2006, pp. 11-27. doi:10.1016/j.jpowsour.2006.02.065
[14] M. Toupin, D. Belanger, I. R. Hill and D. Quinn, “Performance of Experimental Carbon Blacks in Aqueous Supercapacitors,” Journal of Power Sources, Vol. 140, No. 1, January 2005, pp. 203-210. doi:10.1016/j.jpowsour.2004.08.014
[15] Y. M .Tian, Y. Song, Z. H. Tang, Q. G. Gui and L. Liu, “Influence of High Temperature Treatment of Porous Carbon on the Electrochemical Performance in Supercapacitor,” Journal of Power Sources, Vol. 184, No. 2, October 2008, pp. 675-681. doi:10.1016/j.jpowsour.2008.04.070
[16] M. Kaempgen, J. Ma, G. Gruner, G. Wee and S. G. Mhaisalkar, “Bifunctional Carbon Nanotube Networks for Supercapacitors,” Applied Physics Letters, Vol. 90, No. 27, June 2007, p. 264104. doi:10.1063/1.2749187

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.