Share This Article:

Behaviors of Polypyrrole Soft Actuators in LiTFSI or NaCl Electrolyte Solutions Containing Methanol

Abstract Full-Text HTML Download Download as PDF (Size:4486KB) PP. 1-7
DOI: 10.4236/msce.2013.14001    3,087 Downloads   7,157 Views   Citations


Organic soft linear actuators were fabricated using galvanostatic electropolymerization of the polypyrrole (PPy) thin film using a methyl benzoate electrolyte solution of N,N-Diethyl-N-methyl-N-(2-methoxyethyl) ammonium bis (trifluoromethanesulfonyl) imide. The electrochemical deformation behaviors of the PPy actuators were investigated in aqueous solutions of an electrolyte, lithium bis (trifluoromethanesulphonyl) imide (LiTFSI) or sodium chloride (NaCl), containing different concentrations of methanol. The actuating strain of approximately 9% was achieved when the actuator was driven by a potential between –1 and 1 V with the potential sweep rate of 10 mV/s corresponding to 0.0025 Hz in the LiTFSI electrolyte containing 40% to 50% of methanol under a load stress of 0.3 MPa. However, the PPy actuator could not catch up with the higher frequency. On the other hand, the PPy actuator caught up with the potential sweep up to 0.1 Hz in the NaCl solutions with a methanol concentration between 40% and 60% with the expense of the actuating strain to approximately 1%.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Kadoyama, T. , Yamasaki, J. , Tsumuji, F. , Takamiya, S. , Ogihara, S. , Hoshino, D. and Nishioka, Y. (2013) Behaviors of Polypyrrole Soft Actuators in LiTFSI or NaCl Electrolyte Solutions Containing Methanol. Journal of Materials Science and Chemical Engineering, 1, 1-7. doi: 10.4236/msce.2013.14001.


[1] R. H. Baughman, “Conducting Polymer Artificial Muscles,” Synthetic Metals, Vol. 78, No. 3, 1996, pp. 339-353. doi:10.1016/0379-6779(96)80158-5
[2] A. Della Santa, D. De Rossi and A. Mazzoldi, “Performance and Work Capacity of a Polypyrrole Conducting Polymer Linear Actuator,” Synthetic Metals, Vol. 90, No. 2, 1997, pp. 93-100.
[3] M. Kaneko, M. Fukui, W. Takashima and K. Kaneto, “Electrolyte and Strain Dependences of Chemomechanical Deformation of Polyaniline Film,” Synthetic Metals, Vol. 84, No. 1-3, 1997, pp. 795-796. doi:10.1016/S0379-6779(96)04150-1
[4] J. D. Madden, R. A. Cush, T. S. Kanigan, C. J. Brenan and I. W. Hunter, “Encapsulated Polypyrrole Actuators,” Synthetic Metals, Vol. 105, No. 1, 1999, pp. 61-64. doi:10.1016/S0379-6779(99)00034-X
[5] A. S. Hutchison, T. W. Lewis, S. E. Moulton, G. M. Spinks and G. G. Wallace, “Development of PolypyrroleBased Electromechanical Actuators,” Synthetic Metals, Vol. 113, No. 1-2, 2000, pp. 121-127. doi:10.1016/S0379-6779(00)00190-9
[6] T. Morita, Y. Chida, D. Hoshino, T. Fujiya and Y. Nishioka, “Fabrication and Characterization of a Polypyrrole Soft Actuator Having Corrugated Structures,” Molecular Crystals and Liquid Crystals, Vol. 519, No. 1, 2010, pp. 121-127. doi:10.1080/15421401003609681
[7] Y. Chida, H. Katsumata, T. Fujiya, S. Kaihatsu, T. Morita, D. Hoshino and Y. Nishioka, “Silicon Linear Actuator Driven by Electrochemomechanical Strain of Polypyrrole Film,” Sensors and Actuators A: Physical, Vol. 169, No. 2, 2011, pp. 367-372. doi:10.1016/j.sna.2010.12.009
[8] Y. Nishioka, “Polypyrrole Soft Actuators,” In: E. SchabBalcerzak, Ed., Electropolymerization, Intech, Rijeka, 2011, pp. 159-186. doi:10.5772/28329
[9] K. Kaneto, Y. Sonoda and W. Takashima, “Direct Measurement and Mechanism of Electro-Chemomechanical Expansion and Contraction in Polypyrrole Films,” Japanese Journal of Applied Physics, Vol. 39, No. 10, 2000, pp. 5918-5922. doi:10.1143/JJAP.39.5918
[10] L. Bay, K. West, P. Sommer-Larsen, S. Skaarup and M. Benslimane: “A Conducting Polymer Artificial Muscle with 12% Linear Strain,” Advanced Materials, Vol. 15, No. 4, 2003, pp. 310-313.
[11] S. Hara, T. Zama, W. Takashima and K. Kaneto, “Artificial Muscles Based on Polypyrrole Actuators with Large Strain and Stress Induced Electrically,” Polymer Journal, Vol. 36, No. 2, 2004, pp. 151-161. doi:10.1295/polymj.36.151
[12] T. Zama, S. Hara, W. Takashima and K. Kaneto, “The Correlation between Electrically Induced Stress and Mechanical Tensile Strength of Polypyrrole Actuator,” Bulletin of the Chemical Society of Japan, Vol. 77, 2004, pp. 1425-1426. doi:10.1246/bcsj.77.1425
[13] S. Hara, T. Zama, W. Takashima and K. Kaneto, “TFSIDoped Polypyrrole Actuator with 26% Strain,” Journal of Materials Chemistry, Vol. 14, No. 10, 2004, pp. 15161517. doi:10.1039/b404232h
[14] S. Hara, T. Zama, W. Takashima and K. Kaneto: “GelLike Polypyrrole Based Artificial Muscles with Extremely Large Strain,” Polymer Journal, Vol. 36, 2004, pp. 933-936. doi:10.1295/polymj.36.933
[15] M. J. M. Jafeen, M. A. Careem and S. Skaarup, “Speed and Strain of Polypyrrole Actuators: Dependence on Cation Hydration Number,” Ionics, Vol. 16, No. 1, 2010, pp. 1-6.
[16] K. Yamato and K. Kaneto, “Tubular Linear Actuators Using Conducting Polymer, Polypyrrole,” Analytica Chimica Acta, Vol. 568, No. 1-2, 2006, pp. 133-137. doi:10.1016/j.aca.2005.12.030
[17] T. Sendai, H. Suematsu and K. Kaneto, “Anisotropic Strain and Memory Effect in Electrochemomechanical Strain of Polypyrrole Films under High Tensile Stresses,” Japanese Journal of Applied Physics, Vol. 48, No. 5, 2009, Article ID: 051506. doi:10.1143/JJAP.48.051506
[18] W. Takashima, S. S. Pandey and K. Kaneto, “Cyclic Voltammetric and Electrochemomechanical Characteristics of Freestanding Polypyrrole Films in Diluted Media,” Thin Solid Films, Vol. 438-439, 2003, pp. 339-345. doi:10.1016/S0040-6090(03)00757-0
[19] W. Takashima, S. S. Pandey and K. Kaneto: “Investigation of Bi-Ionic Contribution for the Enhancement of Bending Actuation in Polypyrrole Film,” Sensors and Actuator B, Vol. 89, No. 1-2, 2003, pp. 48-52. doi:10.1016/S0925-4005(02)00426-4
[20] J. D. Madden, R. A. Cush, T. S. Kanigan and I. W. Hunter, “Fast Contracting Polypyrrole Actuators,” Synthetic Metals, Vol. 113, No. 1-2, 2000, pp. 185-192. doi:10.1016/S0379-6779(00)00195-8
[21] Y. Wu, G. Alici, G. M. Spinks and G. G. Wallace, “Fast Trilayer Polypyrrole Bending Actuators for High Speed Applications,” Synthetic Metals, Vol. 156, No. 16-17, 2006, pp. 1017-1022.
[22] G. M. Spinks, T. E Campbell and G. G. Wallace, “Force Generation from Polypyrrole Actuators,” Smart Materials and Structures, Vol. 14, No. 2, 2005, pp. 406-412. doi:10.1088/0964-1726/14/2/015
[23] J. D. W. Madden, P. G. A. Madden and I. W. Hunter, “Conducting Polymer Actuators as Engineering Materials,” Proceedings of SPIE, Vol. 4695, 2002, p. 176. doi:10.1117/12.475163
[24] S. Skaarup, L. Bay and K. West, “Polypyrrole Actuators Working at 2 30 Hz,” Synthetic Metals, Vol. 157, No. 6-7, 2007, pp. 323-326. doi:10.1016/j.synthmet.2007.04.001
[25] S. Hara, T. Zama, W. Takashima and K. Kaneto, “FreeStanding Polypyrrole Actuators with Response Rate of 10.8% s-1,” Synthetic Metals, Vol. 149, No. 2-3, 2005, pp. 199-201.
[26] D. Hoshino, T. Morita, Y. Chida, Z. Duan, S. Ogihara, Y. Suzuki and Y. Nishioka, “Effect of 2-Propanol Concentration in Electrolyte Solution on Polypyrrole Actuator Performance,” Japanese Journal of Applied Physics, Vol. 50, No. 1, 2011, 01BG10. doi:10.1143/JJAP.50.01BG10
[27] F. Tsumuji, D. Hoshino, S. Ogihara, Z. Duan, Y. Suzuki, T. Kadoyama, J. Yamasaki and Y. Nishioka, “Polypyrrole Actuator Operating Characteristics in Electrolyte Solution Mixed with Methanol,” Journal of Applied Mathematics and Mechanics, Vol. 300-301, 2013, pp. 1352-1355.
[28] Y. Chida, T. Morita, R. Machida, D. Hoshino and Y. Nishioka, “Fabrication of Bi-Directional Bending Organic Actuators Consisting of Stacked Polypyrrole Films with Different Expansion and Contraction Ratios,” Molecular Crystals and Liquid Crystals, Vol. 519, No. 1, 2010, pp. 115-120.
[29] M. Higashi, D. Hoshino, Z. Duan, S. Ogihara, Y. Suzuki, F. Tsumuji, H. Obayashi and Y. Nishioka, “Influence of Electrochemical Actuations on Mechanical Properties of PPy Actuators in Electrolyte Solutions Mixed with 2-Propanol or Methanol,” Molecular Crystals and Liquid Crystals, Vol. 566, No. 1, 2012, pp. 1-5. doi:10.1080/15421406.2012.701886

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.