Share This Article:

Electrochemical and Microstructural Study of Ni-Cr-Mo Alloys Used in Dental Prostheses

Abstract Full-Text HTML Download Download as PDF (Size:1545KB) PP. 42-48
DOI: 10.4236/msa.2011.21006    7,518 Downloads   13,833 Views   Citations


Ni-Cr-Mo alloys have been widely used as fixed dental prostheses. Recast process influence on corrosion behavior of Ni-Cr-Mo dental alloy in simulated physiological serum has been investigated using chemical and electrochemical techniques. Ni-Cr-Mo alloy recast by induction (induction) or by blowtorch (torch) has exhibited similar dendritic structures with wide and precipitate grains in their boundaries. The torch alloy has presented good corrosion resistance in physiological serum. Passivation process provides this corrosion resistance. Passivation of Ni-Cr-Mo alloy is often attributed to the formation of a thin and compact layer of chromium oxide (Cr2O3). This film is self-limiting because it acts as a barrier to the oxygen transport and metal ions. This film stability will depend on its solubility to the working temperature. Different recast procedures change electrochemical parameters as stabilizing potential in open circuit, current density and passivation interval.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

J. Silva, L. Sousa, R. Nakazato, E. Codaro and H. Felipe, "Electrochemical and Microstructural Study of Ni-Cr-Mo Alloys Used in Dental Prostheses," Materials Sciences and Applications, Vol. 2 No. 1, 2011, pp. 42-48. doi: 10.4236/msa.2011.21006.


[1] J. C. Wataha, “Biocompatibility of Dental Casting Alloys: A Review,” Journal of Prosthetic Dentistry, Vol. 83, February 2000, pp. 223-234. doi:10.1016/S0022-3913(00)80016-5
[2] T. Hryniewicz, R. Rokicki and K. Rokosz, “Co-Cr Alloy Corrosion Behaviour after Electropolishing and Magnetoelectropolishing Treatments,” Materials Letters, Vol. 62, June 2008, pp. 3073-3076. doi:10.1016/j.matlet.2008.01.130
[3] J. C. Wataha, N. L. O’Dell, B. B. Singh, M. Ghazi, G. M. Whitford and P. E. Lockwood, “Relating Nickel-Induced Tissue Inflammation to Nickel Release in Vivo,” Journal of Biomedical Materials Research, Vol. 58, No. 5, May 2001, pp. 537-544. doi:10.1002/jbm.1052
[4] R. M. Joias, R. N. Tango, J. E. J. de Araujo, M. A. J. de Araujo, G. S. F. A. Saavedra, T. J. A. Paes-Junior and E. T. Kimpara, “Shear Bond Strength of a Ceramic to Co-Cr Alloys,” Journal of Prosthetic Dentistry, Vol. 99, January 2008, pp. 55-59.
[5] G. Schmalz and P. Garhammer, “Biological Interactions of Dental Cast Alloys with Oral Tissues,” Dental Materials, Vol. 18, No. 5, July 2002, pp. 396-406. doi:10.1016/S0109-5641(01)00063-X
[6] M. D. Roach, J. T. Wolan, D. E. Parsell and J. D. Bumgardner, “Use of XPS and Cyclic Polarization to Evaluate the Corrosion Behaviour of Six Ni-Cr Alloys before and after PFM Firing,” Journal of Prosthetic Dentistry, Vol. 84, December 2000, pp. 623-634.
[7] C. M. Wylie, R. M. Shelton, G. J. Fleming and A. Davenport, “Corrosion of Nickel-Based Dental Casting Alloys,” Dental Materials, Vol. 23, June 2007, pp. 714-723. doi:10.1016/
[8] A. Fossati, F. Borgiolo, E. Galvanetto and T. Bacci, “Corrosion Resistance Properties of Plasma Nitrided Ti-6Al-4V Alloy in Nitric Acid Solutions,” Corrosion Science, Vol. 46, April 2004, pp. 917-927. doi:10.1016/S0010-938X(03)00188-4
[9] C. Mulders, M. Darwish and R. Holze, “The Influence of Alloy Composition and Casting Procedure upon the Corrosion Behaviour of Dental Alloys: An in Vitro Study,” Journal of Oral Rehabilitation, Vol. 23, December 1996, pp. 825-831. doi:10.1046/j.1365-2842.1996.d01-201.x
[10] S.-J. Kim, Y.-M. Ko and H.-C. Choe, “Pitting Corrosion of TiN Coated Dental Cast Alloy with Casting Methods,” Advanced Materials Research, Vol. 15-17, February 2007, pp. 164-168. doi:10.4028/
[11] J. F. McCabe and W. G. Walls, “Applied Dental Material,” Blackwell Science Ltd., Cambridge, 2008.
[12] G. R. Baran, “The Metallurgy of Ni-Cr Alloys for Fixed Prosthodontics,” Journal of Prosthetic Dentistry, Vol. 50, No. 5, November 1983, pp. 639-650. doi:10.1016/0022-3913(83)90201-9
[13] J. R. Kelly and T. C. Rose, “Non-Precious Alloys for Use in Fixed Prosthodontics: A Literature Review,” Journal of Prosthetic Dentistry, Vol. 49, No. 3, March 1983, pp. 363-370. doi:10.1016/0022-3913(83)90279-2
[14] F. J. Gil, L. A. Sánchez, A. Espías and J. A. Planell, “In Vitro Corrosion Behavior and Metallic Ion Release of Different Prothodontic Alloys,” International Dental Journal, Vol. 49, No. 6, December 1999, pp. 361-367.
[15] R. G. Craig and C. T. Hanks, “Cytotoxicity of Experimental Casting Alloys Evaluated by Cell Culture Tests,” Journal of Dental Research, Vol. 69, No. 8, August 1990, pp. 1539-1542. doi:10.1177/00220345900690081801
[16] K. J. Anusavice, “Phillip’s Science of Dental Materials,” 11th Edition, W. B. Saunders Co., Philadelphia, 2003.
[17] J. C. Wataha, “Alloys for Prosthodontic Restorations,” Journal of Prosthetic Dentistry, Vol. 87, No. 4, April 2002, pp. 351-363. doi:10.1067/mpr.2002.123817
[18] D. Brune, “Metal Release from Dental Biomaterials,” Biomaterials, Vol. 7, No. 3, May 1986, pp. 163-175. doi:10.1016/0142-9612(86)90097-9
[19] J. F. Lopez-Alias, J. Martinez-Gomis and J. M. Anglada, M. Peraire, “Ion Release from Dental Casting Alloys as Assessed by a Continuous Flow System: Nutritional and Toxicological Implications,” Dental Materials, Vol. 22, No. 9, May 2006, pp. 832-837. doi:10.1016/
[20] A. S. Al-Hiyasat, H. Darmani, “The Effects of Recasting on the Cytotoxicity of Base Metal Alloys,” Journal of Prosthetic Dentistry, Vol. 93, No. 2, February 2005, pp. 158-163. doi:10.1016/j.prosdent.2004.11.009
[21] P. Schmutz, N. C. Quach-Vu and I. Gerber, “Metallic Medical Implants: Electrochemical Characterization of Corrosion Processes,” The Journal Electrochemical Society Interface, Vol. 17, 2008, pp. 35-40.
[22] N. Perez, “Electrochemistry and Corrosion Science, Boston,” Kluwer Academic Publishers, 2004, pp. 16-22. doi:10.1007/b118420
[23] K. F. Leinfelder, “New Developments in Resin Restorative Systems,” The Journal of the American Dental Association, Vol. 128, July 1997, pp. 573-581.
[24] J. Geis-Gerstorfer and H. Weber, “In Vitro Corrosion Behaviour of Four Ni-Cr Dental Alloys in Lactic Acid and Sodium Chloride Solutions,” Dental Materials, Vol. 3, No. 6, 1987, pp. 289-295. doi:10.1016/S0109-5641(87)80064-7
[25] A. H. L. Goff, S. Joiret and D. Abourazzouk, “Raman Investigation of Crevice Corrosion in Ni-Cr Dental Alloys Containing Be,” Electrochimica Acta, Vol. 43, No. 1-2, April 1998, pp. 53-62. doi:10.1016/S0013-4686(97)00234-X
[26] L. Liu, Y. Li and F. Wang, “Influence of Microstructure on Corrosion Behaviour of a Ni-Based Superalloy in 3.5 wt.% NaCl,” Electrochimica Acta, Vol. 52, No. 25, September 2007, pp. 7193-7202. doi:10.1016/j.electacta.2007.05.043
[27] H. Awe, S. Kurz, S. Virtanen, V. Fervel, C. O. A. Olsson and S. Mischler, “Passive and Transpassive Behavior of CoCrMo in Simulated Biological Solutions,” Electrochimica Acta, Vol. 49, No. 13, May 2004, pp. 2167-2178.
[28] J. R. Kelly and T. C. Rose, “Non-Precious Alloys for Use in Fixed Prosthodontics,” Journal of Prosthetic Dentistry, Vol. 49, No. 3, March 1983, pp. 363-367. doi:10.1016/0022-3913(83)90279-2

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.