Share This Article:

Growth of Four Varieties of Barley (Hordeum vulgare L.) in Soils Contaminated with Heavy Metals and Their Effects on Some Physiological Traits

Abstract Full-Text HTML Download Download as PDF (Size:553KB) PP. 1799-1810
DOI: 10.4236/ajps.2013.49221    4,361 Downloads   5,968 Views   Citations


To evaluate the effect of zinc (Zn), cadmium (Cd), and chromium (Cr) on growth and selected physiological traits in barley, a greenhouse trial was performed using four barley varieties that were exposed to different concentration of these metals. The parameters quantified were growth, chlorophyll content, and chlorophyll fluorescence during three phenological stages: flag leaf, anthesis, and grain filling. The metal concentrations in both the plant and soil were also quantified. We determined that the varieties studied were more tolerant to Zn and Cd than to Cr. Treatment with Zn did not negatively affect growth, and only high concentrations of Cd decreased growth by approximately 4% to 8%. Plants treated with the highest Cr concentration stopped growing at the flag leaf stage. The amount of metal that accumulated in the plant increased with increasing metal concentration, and the highest amount of accumulated metal was recorded in the root and shoot. Both the plant height and dry weight were higher in the CB502 variety plants, followed by the Reinette, Pedrezuela, and Plaisant varieties. The same trend was observed for the chlorophyll content and fluorescence, with a significant correlation between the growth parameters and chlorophyll content (p < 0.001). Thus, we determined that barley has variability in the studied traits.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Á. González and M. Lobo, "Growth of Four Varieties of Barley (Hordeum vulgare L.) in Soils Contaminated with Heavy Metals and Their Effects on Some Physiological Traits," American Journal of Plant Sciences, Vol. 4 No. 9, 2013, pp. 1799-1810. doi: 10.4236/ajps.2013.49221.


[1] A. J. M. Baker, S. P. McGrath, R. D. Reeves and J. A. C. Smith, “Metal Hyperaccumulator Plants: A Review of the Ecology and Physiology of a Biological Resource for Phytoremediation of Metal-Populled Soils,” In: N. Terry and G. Banuelos, Ed., Phytoremediation of Contaminated Soil and Water, CRP Press LLC, Boca Raton, 2000, pp. 85-107.
[2] S. P. McGrath, F. J. Zhao and E. Lombi, “Plant and Rhizosphere Processes Involved in Phytoremediation of Metal-Contaminated Soils,” Plant and Soil, Vol. 232, No. 1-2, 2001, pp. 207-214. doi:10.1023/A:1010358708525
[3] S. P. McGrath, F. J. Zhao and E. Lombi, “Phytoremediation of Metals, Metalloids, and Radionucleides,” Advances in Agronomy, Vol. 75, 2002, pp. 1-56. doi:10.1016/S0065-2113(02)75002-5
[4] R. L. Chaney, “Plant Uptake of Inorganic Waste Constituents,” In: J. F. Parr, P. B. Marsch and J. S. Kla, Eds., Land Treatment of Inorganic Wastes, Noyes Data, Park Ridge, 1983, pp. 50-76.
[5] D. E. Salt, M. Blaylock, N. P. B. A. Kumar, V. Dushenkov, B. D. Ensley, I. Chet and I. Raskin, “Phytoremediation: A Novel Strategy for the Removal of Toxic Metals from the Environment Using Plants,” BioTechnology, Vol. 13, No. 5, 1995, pp. 468-474. doi:10.1038/nbt0595-468
[6] S. D. Cunningham and D. W. Ow, “Promises and Prospects of Phytoremediation,” Plant Physiology, Vol. 110, No. 3, 1996, pp. 715-719.
[7] D. E. Salt, R. D. Smith and I. Raskin, “Phytoremediation,” Annual Review of Plant Physiology and Plant Molecular Biology, Vol. 49, No. 1, 1998, pp. 643-668. doi:10.1146/annurev.arplant.49.1.643
[8] M. A. Soriano and E. Federes, “Use of Crops for in Situ Phytoremediation of Polluted Soils Following a Toxic Flood from a Mine Spill,” Plant and Soil, Vol. 256, No. 2, 2003, pp. 253-264. doi:10.1023/A:1026155423727
[9] C. W. A. Nascimento and B. Xing, “Phytoextraction: A Review on Enhanced Metal Availability and Plant Accumulation,” Scientia Agricola, Vol. 63, No. 3, 2006, pp. 299-311. doi:10.1590/S0103-90162006000300014
[10] J. M. Clark, W. A. Norvell, F. R. Clark and W. T. Buckley, “Concentration of Cadmium and Other Elements in the Grain of Near-Isogenic Durum Lines,” Canadian Journal of Animal Science, Vol. 82, No. 1, 2002, pp. 27-33.
[11] D. Ueno, E. Koyama, N. Yamaji and J. F. Ma, “Physiological, Genetic, and Molecular Characterization of a High-Cd-Accumulating Rice Cultivar, Jarjan,” Journal of Experimental Botany, Vol. 62, No. 7, 2011, pp. 2265-2272. doi:10.1093/jxb/erq383
[12] A. Vassilev, J. Vangronsveld and I. Yordanov, “Cadmium Phytoextraction: Present State, Biological Backgrounds and Research Needs,” Bulgarian Journal of Plant Physiology, Vol. 28, No. 3-4, 2002, pp. 68-95.
[13] X. Zhang, G. Zhang, L. Guo, H. Wang, D. Zeng, G. Dong, O. Qian and D. Xue, “Identification of Quantitative Trait Loci for Cd and Zn Concentrations of Brown Rice Grown in Cd-Polluted Soils,” Euphytica, Vol. 180, No. 2, 2011, pp. 173-179. doi:10.1007/s10681-011-0346-9
[14] M. M. Lasat, “Phytoextraction of Metals from Contaminated Soil: A Review of Plant/Soil/Metal Interaction and Assessment of Pertinent Agronomic Issues,” Journal of Hazardous Substance Research, Vol. 2, No. 5, 2000, pp. 1-25.
[15] S. Karenlampi, H. Schat, J. Vangronsveld, J. A. C. Verkleij, D. van der Lelie, M. Mergeay and A. I. Tervahauta, “Genetic Engineering in the Improvement of Plants for Phytoremediation of Metal Polluted Soils,” Environmental Pollution, Vol. 107, 2000, pp. 225-231. doi:10.1016/S0269-7491(99)00141-4
[16] M. R. Macnair, V. Bert, S. B. Huitson, P. Saumitou-Laprade and D. Petit, “Zinc Tolerance and Hyperaccumulation Are Genetically Independent Characters,” Proceedings of the Royal Society B, Vol. 266, No. 1434, 1999, pp. 2175-2179. doi:10.1098/rspb.1999.0905
[17] N. Roosens, N. Verbruggen, P. Meerts, P. Ximénez-Embún and J. A. C. Smith, “Natural Variation in Cadmium Tolerance and Its Relationship to Metal Hyperaccumulation for Seven Populations of Thlaspi caerulescens from Western Europe,” Plant, Cell and Environment, Vol. 26, No. 10, 2003, pp. 1657-1672. doi:10.1046/j.1365-3040.2003.01084.x
[18] M. J. McLaughlin, D. R. Parker and J. M. Clarke, “Metals and Micronutrients-Food Safety Issues,” Field Crops Research, Vol. 60, No. 1, 1999, pp. 143-163. doi:10.1016/S0378-4290(98)00137-3
[19] B. A. Adeniji, M. T. Budimir-Hussey and S. M. Macfie, “Production of Organic Acids and Adsorption of Cd on Roots of Durum Whea (Triticum turgidum L. var. Durum),”Acta Physiologiae Plantarum, Vol. 32, 2010, pp. 1063-1072. doi:10.1007/s11738-010-0498-6
[20] R. Cabala, L. Slováková, M. El Zohri and H. Frank, “Accumulation and Translocation of Cd Metal and the CdInduced Production of Glutathione and Phytochelatins in Vicia faba L,” Acta Physiologiae Plantarum, Vol. 33, No. 4, 2011, pp. 1239-1248. doi:10.1007/s11738-010-0653-0
[21] J. C. Zadoks, T. T. Chang and C. F. Kozank, “A Decimal Code for the Growth Stages of Cereals,” Weed Research, Vol. 14, No. 6, 1974, pp. 415-421. doi:10.1111/j.1365-3180.1974.tb01084.x
[22] D. Ci, D. Jiang, B. Wollenweber, T. Dai, Q. Jing and W. Cao, “Cadmium Stress in Wheat Seedlings: Growth, Cadmium Accumulation and Photosynthesis,” Acta Phisiologiae Plantarum, Vol. 32, No. 2, 2010, pp. 365-373. doi:10.1007/s11738-009-0414-0
[23] L. L. Martins, M. P. Mourato, A. I. Cardoso, A. P. Pinto, A. M. Mota, M. L. S. Goncalves and A. de Varennes, “Oxidative Stress Induced by Cadmium in Nicotiana tabacum L.: Effects on Growth Parameters, Oxidative Damage and Antioxidant Responses in Different Plant Parts,” Acta Physiologiae Plantarum, Vol. 33, 2011, pp. 1375-1383. doi:10.1007/s11738-010-0671-y
[24] Y. Yang, Ch. Sun, Y. Yao, Y. Zhang and V. Achal, “Growth and Physiological Responses of Grape (Vitis vinifera “Combier”) to Excess Zinc,” Acta Physiologiae Plantarum, Vol. 33, No. 4, 2011, pp. 1483-1491. doi:10.1007/s11738-010-0687-3
[25] B. Qiu, W. Zhou, D. Xue, F. Zeng, S. Ali and G. Zhang, “Identification of Cr-Tolerance Lines in a Rice (Oryza sativa L.) DH Population,” Euphytica, Vol. 174, No. 2, 2010, pp. 199-207. doi:10.1007/s10681-009-0115-1
[26] P. Vernay, C. Gauthier-Moussard and A. Hitmi, “Interaction of Bioaccumulation of Heavy Metal Chromium with Water Relation, Mineral Nutrition and Photosynthesis in Developed Leaves of Lolium perenne L,” Chemosphere, Vol. 68, No. 8, 2007, pp. 1563-1575. doi:10.1016/j.chemosphere.2007.02.052
[27] L. M. Sandalio, H. C. Dalurzo, M. Gómez, M. C. Romero-Puertas and L. A. del Río, “Cadmium-Induced Changes in the Growth and Oxidative Metabolism of Pea Plants,” Journal of Experimental Botany, Vol. 52, 2010, pp. 2115-2126.
[28] E. Nada, B. A. Ferjani, R. Ali, B. R. Bechir, M. Imed and B. Makki, “Cadmium-Induced Growth Inhibition and Alteration of Biochemical Parameters in Almond Seedlings Grown in Solution Culture,” Acta Physiologiae Planttarum, Vol. 29, 2007, pp. 57-62. doi:10.1007/s11738-006-0009-y
[29] R. W. dos Santos, E. C. Schmidt, R. Martins, A. Latini, M. Maraschin, P. A. Horta and Z. L. Bouzon, “Effects of Cadmium on Growth, Photosynthetic Pigments, Photosynthetic Performance, Biochemical Parameters and Structure of Chloroplasts in the Agarophyte Gracilaria domingensis (Rhodophyta, Gracilariales),” American Journal of Plant Sciences, Vol. 3, No. 8, 2012, pp. 1077-1084. doi:10.4236/ajps.2012.38129
[30] A. Vassilev, I. Yordanov and T. Tsonev, “Effects of Cd2+ on the Physiological State and Photosynthetic Activity of Young Barley Plants,” Photosynthetica, Vol. 34, No. 2, 1997, pp. 293-302. doi:10.1023/A:1006805010560
[31] A. González, V. Chumillas and M. C. Lobo, “Effect of Zn, Cd and Cr on Growth, Water Status and Chlorophyll Content of Barley Plants (H. vulgare L.),” Agricultural Sciences, Vol. 3, No. 4, 2012, pp. 572-581. doi:10.4236/as.2012.34069
[32] Y. Ozdener and B. K. Aydin, “The Effect of Zinc on the Growth and Physiological and Biochemical Parameters in Seedlings of Eruca sativa (L.) (Rocket),” Acta Physiologiae Plantarum, Vol. 32, No. 3, 2010, pp. 469-476. doi:10.1007/s11738-009-0423-z

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.