Share This Article:

Administering Copper Blocks CA1 Neuron Hyper-Excitability in Rat Hippocampal Slices

Abstract Full-Text HTML XML Download Download as PDF (Size:236KB) PP. 403-408
DOI: 10.4236/jbbs.2013.35041    2,504 Downloads   3,904 Views   Citations

ABSTRACT

The aim of this study was to determine the capacity of copper to modify synaptic hyperexcitability generated by penicillin G. This epileptogenic drug was studied with CA1 neurons of the rat hippocampus. Hippocampal slices were extracted from adult male Wistar rats (n = 16). The field potentials (FP) were registered in CA1 neurons after electrical stimulation from the stratum radiatum. The mean voltage and duration of FP were measured during control, penicillin G, copper and washout stages. Copper (100 μM) significantly decreased mean FP voltage compared to the control and penicillin stages. However, during the washout stage, the mean FP voltage was significantly higher than in the penicillin stage. Regarding the FP duration, 100 μM of copper significantly decreased the mean FP during the penicillin stage. After the washing stage, the mean FP lasted significantly longer. Thus, administering copper modified CA1 synapses by blocking hippocampal neuronal excitability was generated by the epileptic agent.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

J. Leiva, M. Palestini and C. Infante, "Administering Copper Blocks CA1 Neuron Hyper-Excitability in Rat Hippocampal Slices," Journal of Behavioral and Brain Science, Vol. 3 No. 5, 2013, pp. 403-408. doi: 10.4236/jbbs.2013.35041.

References

[1] M. Olivares and R. Uauy, “Copper as an Essential Nutrient,” The American Journal of Clinical Nutrition, Vol. 63, No. 5, 1996, pp. 791S-796S.
[2] R. J. Cousins, “Metal Elements and Gene Expression,” Annual Review of Nutrition, Vol. 14, 1994, pp. 449-469. doi:10.1146/annurev.nu.14.070194.002313
[3] M. C. Linder and M. Hazegh-Azam, “Copper Biochemistry and Molecular Biology,” The American Journal of Clinical Nutrition, Vol. 63, No. 5, 1996, pp. 797S-811S.
[4] J. T., Pennington and D. H. Calloway, “Copper Content of Food,” Journal of the American Dietetic Association, Vol. 63, 1974, pp. 145-173.
[5] G. J. Brewer, “Copper Excess, Zinc Deficiency, and Cognition Loss in Alzheimer’s Disease,” Biofactors, Vol. 38, No. 2, 2012, pp. 107-113. doi:10.1002/biof.1005
[6] L. Varela-Nallar, E. M. Toledo, M. A. Chacón and N. Inestrosa, “The Functional Links between Prion Protein and Copper,” Biological Research, Vol. 39, No. 1, 2006, pp. 39-44. doi:10.4067/S0716-97602006000100005
[7] M. A. Chacón, M. I. Barría, R. Lorca, J. P. HuidobroToro and N. C. Inestrosa, “A Human Prion Protein Peptide (PrP59-91) Protects against Copper Neurotoxicity,” Molecular Psychiatry, Vol. 8, No. 10, 2003, pp. 853-862. doi:10.1038/sj.mp.4001400
[8] D. J. Waggoner, T. B. Bartnikas and J. D. Gitlin, “The Role of Copper in Neurodegenerative Disease,” Neurobiology of Disease, Vol. 6, No. 4, 1999, pp. 221-230. doi:10.1006/nbdi.1999.0250
[9] P. Zatta and A. Frank, “Copper Deficiency and Neurological Disorders in Man and Animals,” Brain Research Reviews, Vol. 54, No. 2, 2007, pp. 19-33. doi:10.1016/j.brainresrev.2006.10.001
[10] D. E. Hartter and A. Bernea, “Evidence for Release of Copper in the Brain: Depolarization-Induced Release of Newly Taken up 67 Copper,” Synapse, Vol. 2, No. 2, 1988, pp. 412-415. doi:10.1002/syn.890020408
[11] J. Kardos, I. Kovacs, F. Hajos, M. Kalman and M. Simoyi, “Nerve Ending from Rat Brain Tissue Releases Copper upon Depolarization. A Possible Role in Regulating Neuronal Excitability,” Neuroscience Letters, Vol. 103, No. 2, 1989, pp. 139-144. doi:10.1016/0304-3940(89)90565-X
[12] J. Leiva, M. Palestini, M. Tetas and J. López, “Copper Sensitivity in Dorsal Hippocampus Slices,” Archives Italiennes de Biologie, Vol. 138, No. 2, 2000, pp. 175-184.
[13] J. Leiva, M. Palestini and P. Gaete, “Copper Interaction on the Long-Term Potentiation,” Archives Italiennes de Biologie, Vol. 141, No. 4, 2003, pp.149-155.
[14] Y. Doroulee, H. Yanovky and H. Haas, “Suppression of Long-Term Potentiation in Hippocampal Slices by Copper,” Hippocampus, Vol. 7, No. 6, 1997, pp. 666-669. doi:10.1002/(SICI)1098-1063(1997)7:6<666::AID-HIPO8>3.0.CO;2-C
[15] A. Goldschmith, C. Infante, J. Leiva, E. Motles and M. Palestini, “Interference of Chronically Ingested Copper in Long-Term Potentiation (LTP) of Rat Hippocampus,” Brain Research, Vol. 1056, No. 2, 2005, pp. 176-182. doi:10.1016/j.brainres.2005.07.030
[16] J. Leiva, M. Palestini, C. Infante, A. Goldschmith and E. Motles, “Copper Suppresses Hippocampus LTP in the Rat, But Does Not Alter Learning or Memory in the Morris Water Maze,” Brain Research, Vol. 1256, No. 23, 2009, pp. 69-75. doi:10.1016/j.brainres.2008.12.041
[17] A. E. Weiker and H. C. Johnson, “Convulsive Factor in Commercial Penicillin,” Archives of Surgery, Vol. 50. No. 2, 1945, pp. 69-73. doi:10.1001/archsurg.1945.01230030074003
[18] R. Dingledine and L. Gjerstand, “Reduced Inhibition during Epileptiform Activity in the in Vitro Hippocampal Slices,” The Journal of Physiology (London), Vol. 305, 1980, pp. 297-313.
[19] N. F. Santos, R. H. Marquez, L. Correia, R. SinnigagliaCoimbra, L. Calderazzo, E. R. G. Sanabria and E. A. Cavalheiro, “Long-Term Consequences of Mutiple Pilocarpine-Induced Status Epilepticus during Early Life,” Congreso Latinoamericano de Epilepsia, OMS/OPSILAEIBE, Santiago, 2000, pp. 200-206.
[20] E. R. Kandel, T. M., Schwar and T. M. Jessell, “Neurociencia y Conducta, Chap. 36,” In: E. R. Kandel, T. M., Schwar and T. M. Jessell, Eds., Mecanismos Celulares del Aprendizaje y la Memoria, Prentice Hall, Madrid, 1997, pp. 730-738.
[21] S. J. Martin, P. D. Grimwood and R. G. M. Morris, “Synaptic Plasticity and Memory: An Evaluation of Hypothesis,” Annual Review of Neuroscience, Vol. 23, 2000, pp. 649-777. doi:10.1146/annurev.neuro.23.1.649
[22] P. Revest and A. Longstaff, “Molecular Neuroscience, Chap. 8,” In: P. Revest and A. Longstaff, Eds., Mechanism of Plasticity, Springer-Verlag, Inc., New York, 1998, pp. 151-190.
[23] A. I. Bush, “The Metallobiology of Alzheimer’s Disease,” Trends in Neurosciences, Vol. 26, No. 4, 2003, pp. 207-214. doi:10.1016/S0166-2236(03)00067-5
[24] B. Van Zundert, A. Yoshii and M. Constantine-Patton, “Receptor Compart-Mentalization and Trafficking at Glutamate Synapses: A Developmental Proposal,” Trends in Neurosciences, Vol. 27, No. 7, 2004, pp. 428-436. doi:10.1016/j.tins.2004.05.010
[25] K. Erreger, Sh. M. Dravid, T. G. Banke, D. J. A. Wyllie and S. F. Traynelis, “Subunit-Specific Gating Control Rat NR1/NR2A and NR1/NR2B NMDA Channel Kinetics and Synaptic Signaling Profiles,” The Journal of Physiology, Vol. 563, No. 2, 2005, pp. 345-358. doi:10.1113/jphysiol.2004.080028
[26] Ch. Peters, B. Munoz, F. J. Sepúlveda, J. Urrutia, M. Quiroz, S. Luza, G. V. De Ferrari, L. G. Aguayo and C. Opazo, “Biphasic Effects of Copper on Neurotransmission in Rat Hippocampal Neurons,” Journal of Neurochemistry, Vol. 119, No. 1, 2011, pp. 78-88. doi:10.1111/j.1471-4159.2011.07417.x
[27] G. F. Ayala and C. Vasconcelos, “Penicillin as an Epileptogenic Agent: Its Effects on an Isolated Neuron,” Science, Vol. 167, No. 3922, 1970, pp. 1257-1260. doi:10.1126/science.167.3922.1257
[28] R. K. S. Wong and D. A. Prince, “Dendritic Mechanisms Underlaying Penicillin-Induced Epileptiform Activity,” Science, Vol. 204, No. 4398, 1979, pp. 1228-1231. doi:10.1126/science.451569
[29] J. Davenport, P. C. Schwindt and W. E. Crill, “Epileptogenic Doses of Penicillin Do Not Reduce a Monosynaptic GABA-Mediated Post-Synaptic Inhibition in the Intact Anesthetized Cat,” Experimental Neurology, Vol. 65, No. 3, 1979, pp. 552-572. doi:10.1016/0014-4886(79)90044-X
[30] R. L. McDonald and J. L. Barker, “Pentylenetetrazole and Penicillin Are Selective Antagonists of GABA-Mediated Post-Synaptic Inhibition in Cultured Mammalian Neurons,” Nature, Vol. 267, No. 5613, 1977, pp. 720-721. doi:10.1038/267720a0
[31] C. J. Frederickson, “Neurobiology of Zinc and Zinc-Containing Neurons,” International Review of Neurobiology. Vol. 31, 1989, pp. 145-238. doi:10.1016/S0074-7742(08)60279-2
[32] C. J. Frederickson and G. Danscher, “Zinc-Containing Neurons in Hippocampus and Related CNS Structures,” Progress in Brain Research, Vol. 83, 1990, pp. 71-84. doi:10.1016/S0079-6123(08)61242-X
[33] C. J. Frederickson, G. A. Howell, M. D. Haigh and G. Danscher, “Zinc Containing Fiber Systems in the Cochlear Nuclei of the Rat and Mouse,” Hearing Research, Vol. 36, No. 2-3, 1988, pp. 203-211.
[34] V. Bancila, I. Nokonenko, Y. Dunant and A. Bloc, “Zinc Inhibits Glutamate Release via Activation of Pre-Synaptic K Channels and Reduces Ischaemic Damage in Rat Hippocampus,” Journal of Neurochemistry, Vol. 90, No. 5, 2004, pp. 1243-1250. doi:10.1111/j.1471-4159.2004.02587.x
[35] N. L. Harrison and S. J. Gibbsons, “Zn: An Endogenous Modulator of Ligand-and Voltage-Gated Ion Channels,” Journal of Neuropharmacology, Vol. 33, No. 8, 1994, pp. 935-952. doi:10.1016/0028-3908(94)90152-X
[36] M. Horning and P. Q. Trombley, “Zinc and Copper Influence Excitability of Rat Olfactory Bulb Neurons by Multiple Mechanisms,” Journal of Neurophysiology, Vol. 86, No. 4, 2001, pp. 1652-1660.
[37] T. G. Smart, X. Xie and B. J. Krishek, “Modulation of Inhibitory and Excitatory Amino Acid Receptor Ion Channels by Zinc,” Progress in Neurobiology, Vol. 42, No. 3, 1994, pp. 393-441. doi:10.1016/0301-0082(94)90082-5
[38] A. Takeda, “Movement of Zinc and Its Functional Significance in the Brain,” Brain Research Reviews, Vol. 34, No. 3, 2000, pp. 137-148. doi:10.1016/S0165-0173(00)00044-8
[39] A. Takeda, A. Minami, Y. Seki and N. Oku, “Inhibitory Function of Zinc against Excitation of Hippocampal Glutamatergic Neurons,” Epilepsy Research, Vol. 57, No. 2-3, 2003, pp. 169-174.
[40] L. Zirpel and T. N. Parks, “Zinc Inhibition of Group I mGluR-Mediated Calcium Homeostasis in Auditory Neurons,” Journal of the Association for Research in Otolaryngology, Vol. 2, No. 2, 2001, pp. 180-187.
[41] N. L. Salazar-Weber and J. P. Smith, “Copper Inhibits NMDA Receptor-Independent LTP and Modulates the Paired-Pulse Ratio after LTP in Mouse Hipocampal Slices,” International Journal of Alzheimer’s Disease, Vol. 2011, 2011, Article ID: 864753.
[42] C. H. M. Brunia and G. Buyze, “Serum Copper Levels and Epilepsy,” Epilepsia, Vol. 13, No. 5, 1972, pp. 621-625. doi:10.1111/j.1528-1157.1972.tb04397.x
[43] R. W. Wojciak, E. Mojs, M. Stanislawska-Kubiak and W. Samborski, “The Serum Zinc, Cooper Iron and Chromium Concentrations in Epileptic Children,” Epilepsy Research, Vol. 104, No. 1-2, 2013, pp. 40-44.
[44] M. Zhongming, K. Y. Wong and F. T. Horrigan, “An Extracellular Cu2+ Binding Site in the Voltage Sensor of BK and Shaker Potassium Channels,” The Journal of General Physiology, Vol. 131, No. 5, 2008, pp. 483-502. doi:10.1085/jgp.200809980
[45] Z. Liu, S. Liu, G. Ren, T. Zhang and Z. Yang, “Nano-CuO Inhibited Voltage-Gate Sodium Current of Hippocampal CA1 via Reactive Oxygen Species but Independent from G-Proteins Pathway,” Journal of Applied Toxicology, Vol. 31, No. 5, 2011, pp. 439-445. doi:10.1002/jat.1611
[46] H. W. Kang, I. Vitko, S. S. Lee, E. Pérez-Reyes and J. H. Lee, “Structural Determinants of the High Affinity Extracellular Zinc Binding Site on CAv 3.2 T-Type Calcium Channels,” Journal of Biological Chemistry, Vol. 285, No. 5, 2010, pp. 3271-3281. doi:10.1074/jbc.M109.067660
[47] L. Castelli, F. Tanzi, V. Taglietti and J. Magistretti, “Cu2+, Co2+, and Mn2+ Modify the Gating Kinetics of HighVoltage-Activated Ca2+ Channels in Rat Paleocortical Neurons,” Journal of Membrane Biology, Vol. 195, 2003, pp. 121-136.
[48] D. Sahin, G. Ilbay and N. Ates, “Changes in the Blood Brain Barrier Permeability and in the Brain Tissue Trace Element Concentrations after Single and Repeated Pentylenetetrazole-Induce Seizures in Rats,” Pharmacological Research, Vol. 48, No. 1, 2003, pp. 69-73.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.