Share This Article:

Optimization and kinetic modeling of lipase mediated enantioselective kinetic resolution of (±)-2-octanol

Abstract Full-Text HTML Download Download as PDF (Size:769KB) PP. 1025-1033
DOI: 10.4236/ns.2013.59127    3,670 Downloads   5,512 Views   Citations


Chiral 2-octanol is one of the key intermediates for preparation of liquid crystal materials, as well as many optically active pharmaceuticals. Lipase catalyzed kinetic resolution has proved to be an efficient technique for synthesis of enantiomerically enriched compounds. In the present study, optimization and kinetic modeling of kinetic resolution of (±)-2-octanol was done by using vinyl acetate as an acyl donor in n-heptane as a solvent. Response surface methodology (RSM) and four-factor-five-level Centre Composite Rotatable Design (CCRD) were employed to evaluate the effect of various parameters such as speed of agitation, enzyme loading, temperature and acyl donor/alcohol molar ratio on conversion, enantiomeric excess (ee), enantioselectivity and initial rate of reaction. Acylation of 2-octanol with vinyl acetate catalyzed by Novozyme 435 follows the ternary complex mechanism (ordered bi-bi mechanism) with inhibition by 2-octanol.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Sontakke, J. and Yadav, G. (2013) Optimization and kinetic modeling of lipase mediated enantioselective kinetic resolution of (±)-2-octanol. Natural Science, 5, 1025-1033. doi: 10.4236/ns.2013.59127.


[1] Turner, N.J. (2003) Controlling chirality. Current Opinion in Biotechnology, 14, 401-406. doi:10.1016/S0958-1669(03)00093-4
[2] Huisman, G. and Gray, D. (2002) Towards novel processes for the fine chemical and pharmaceutical industries. Current Opinion in Biotechnology, 13, 352-358. doi:10.1016/S0958-1669(02)00335-X
[3] Patel, R.N. (2001) Biocatalytic synthesis of intermediates for the synthesis of chiral drug substances. Current Opinion in Biotechnology, 12, 587-604. doi:10.1016/S0958-1669(01)00266-X
[4] Loughlin, W.A. (2000) Biotransformations in organic synthesis. Bioresource Technology, 74, 49-62. doi:10.1016/S0960-8524(99)00145-5
[5] Yadav, G.D. and Devi, K.M. (2002) Enzymatic synthesis of perlauric acid using Novozym 435. Biochemical Engineering Journal, 10, 93-101. doi:10.1016/S1369-703X(01)00164-4
[6] Yadav, G.D. and Borkar, I.V. (2006) Kinetic modeling of microwave assisted chemo-enzymatic epoxidation of styrene to styrene oxide. American Institute of Chemical Engineers Journal, 52, 1235-1247. doi:10.1002/aic.10700
[7] Yadav, G.D. and Devi, K.M. (2004) Kinetics of hydrolysis of tetrahydrofurfuryl butyrate in a three phase system containing immobilized lipase from Candida antartica. Biochemical Engineering Journal, 17, 57-63. doi:10.1016/S1369-703X(03)00125-6
[8] Yadav, G.D. and Devi, K.M. (2004) Immobilized lipasecatalyzed esterification and transesterification reactions in non-aqueous media for synthesis of tetrahydrofurfuryl butyrate: Comparison and kinetic modelling. Chemical Engineering Science, 59, 373-383. doi:10.1016/j.ces.2003.09.034
[9] Yadav, G.D. and Lathi, P.S. (2006) Intensification of enzymatic synthesis of propylene glycol monolaurate from 1,2-propanediol and lauric acid under microwave irradiation: Kinetics of forward and reverse reactions, Enzyme and Microbial Technology, 38, 814-820.
[10] Yadav, G.D. and Dhoot, S.B. (2009) Immobilized lipasecatalysed synthesis of cinnamyl laurate in non-aqueous media. Journal of Molecular Catalysis B: Enzymatic, 57, 34-39.
[11] Yadav, G.D. and Jadhav, S.R. (2005) Synthesis of reusable lipases by immobilization on hexagonal mesoporous silica and encapsulation in calcium alginate: Transesterification in non-aqueous medium. Microporous and Mesoporous Materials, 86, 215-222. doi:10.1016/j.micromeso.2005.07.018
[12] Yadav, G.D. and Devendran, S. (2012) Lipase catalyzed synthesis of cinnamyl acetate via transesterification in non-aqueous medium. Process Biochemistry, 47, 496-502.
[13] Yadav, G.D. and Borkar, I.V. (2008) Kinetic modeling of immobilized lipase catalysis in synthesis of n-butyl levulinate. Industrial and Engineering Chemistry Research, 47, 3358-3363.
[14] Yadav, G.D. and Borkar, I.V. (2009) Novelties of synthesis of n-butyl acetamide over immobilized lipase. Journal of Chemical Technology and Biotechnology, 84, 420-426. doi:10.1002/jctb.2056
[15] Yadav, G.D. and Borkar, I.V. (2010) Lipase-catalyzed hydrazinolysis of phenyl benzoate: Kinetic modeling approach. Process Biochemistry, 45, 586-592. doi:10.1016/j.procbio.2009.12.005
[16] Yadav, G.D. and Borkar, I.V. (2009) Kinetic and mechanistic investigation of microwave-assisted lipase catalyzed synthesis of citronellyl acetate. Industrial and Engineering Chemistry Research, 48, 7915-7922. doi:10.1021/ie800591c
[17] Yadav, G.D., Dhoot, S.B. and Sajgure, A.D. (2008) Insight into microwave irradiation and enzyme catalysis in enantioselective resolution of RS-(±)methyl mandelate. Journal of Chemical Technology and Biotechnology, 83, 1145-1153. doi:10.1002/jctb.1975
[18] Yadav, G.D. and Thorat, P.A. (2012) Microwave assisted lipase catalyzed synthesis of isoamyl myristate in solvent-free system. Journal of Molecular Catalysis B: Enzymatic, 83, 16-22. doi:10.1016/j.molcatb.2012.06.011
[19] Yadav, G.D. and Shinde, S.D. (2012) Synergism of microwave irradiation and immobilized lipase catalysis in synthesis of 4,8-dimethylnon-7-en-1yl (2E)-3-phenylpro2-enolate. International Reviews in Chemical Engineering, 4, 589-596.
[20] Yadav, G.D. and Pawar, S.V. (2012) Synergism between microwave irradiation and enzyme catalysis in trans-esterification of ethyl-3-phenylpropanoate withn-butanol. Bioresource Technology, 109, 1-6. doi:10.1016/j.biortech.2012.01.030
[21] Yadav, G.D., Sajgure, A.D. and Dhoot, S.D. (2007) Enzyme catalysis in fine chemical and pharmaceutical industries. In: Bhattacharya, S.K., Ed., Enzyme Mixtures and Complex Biosynthesis, Landes Biosciences, Austin.
[22] Riermeier, T.H., Gross, P., Monsees, A., Hoff, M. and Trauthwein, H. (2005) Dynamic kinetic resolution of secondary alcohols with a readily available rutheniumbased racemization catalyst. Tetrahedron Letters, 46, 34033406. doi:10.1016/j.tetlet.2005.03.074
[23] Cong, F.D., Wang, Y.H., Ma, C.Y., Yub, H.F., Han, S.P., Tao, J. and Cao, S.G. (2005) A way for resolution of (R, S)-2-octanol by combining dynamic kinetic resolution with double kinetic resolution. Enzyme and Microbial Technology, 36, 595-599. doi:10.1016/j.enzmictec.2004.12.009
[24] Yu, D., Chen, P., Wang, L., Gu, Q., Li, Y., Wang, Z. and Cao, S. (2007) A chemo-enzymatic process for sequential kinetic resolution of (R,S)-2-octanol under microwave irradiation. Process Biochemistry, 42, 1312-1318. doi:10.1016/j.procbio.2007.06.011
[25] Wang, Y., Wang, R., Li, Q., Zhanga, Z. and Feng, Y. (2009) Kinetic resolution of rac-alkyl alcohols via lipase-catalyzed enantioselective acylation using succinic anhydride as acylating agent. Journal of Molecular Catalysis B: Enzymatic, 56, 142-145. doi:10.1016/j.molcatb.2008.02.002
[26] Xun, E.N., Lv, X.L., Kang, W., Wang, J.X., Zhang, H., Wang, L. and Wang, Z. (2012) Immobilization of pseudomonas fluorescens lipase onto magnetic nanoparticles for resolution of 2-octanol. Applied Biochemistry Biotechnology, 168, 697-707. doi:10.1007/s12010-012-9810-9
[27] Ren, L., Xu, T., He, R., Jiang, Z., Zhou, H. and Wei, P. (2013) A green resolution-separation process for aliphatic secondary alcohols. Tetrahedron: Asymmetry, 24, 249253.
[28] Zhao, L.F. and Zheng, L.Y. (2011) Resolution of 2-octanol via immobilized Pseudomonas sp. lipase in organic medium. Biocatalysis and Biotransforamtion, 29, 47-53. doi:10.3109/10242422.2010.551189
[29] Yu, D., Ma, D., Wang, Z., Wang, Y., Pan, Y. and Fang, X. (2012) Microwave-assisted enzymatic resolution of (R,S)2-octanol in ionic liquid. Process Biochemistry, 47, 479484.
[30] Wang, Y., Li, Q., Zhang, Z., Ma, J. and Feng, Y. (2009) Solvent effects on the enantioselectivity of the thermophilic lipase QLM in the resolution of (R,S)-2-octanol and (R,S)-2-pentanol. Journal of Molecular Catalysis B: Enzymatic, 56, 146-150. doi:10.1016/j.molcatb.2008.01.010
[31] Ursoiu, A., Ungurean, M., Paul, C. and Peter, F. (2010) Optimization of 2-octanol kinetic resolution by selection of solgel immobilization precursors and reaction parameters. Journal of Biotechnology, 150S, S1-S576. doi:10.1016/j.jbiotec.2010.09.493
[32] Bas, D. and Boyaci, I.H. (2007) Modeling and optimization I: Usability of response surface methodology. Journal of Food Engineering, 78, 836-845. doi:10.1016/j.jfoodeng.2005.11.024
[33] Soto-Cruz, O., Saucedo-Castaneda, G., Pablos-Hach, J.L., Gutiérrez-Rojas, M. and Favela-Torres, E. (1999) Effect of substrate composition on the mycelial growth of Pleurotus ostreatus. An analysis by mixture and response surface Methodologies Process Biochemistry, 35, 127-133.
[34] Diniz, F.M. and Martin, A.M. (1996) Use of response surface methodology to describe the combined effects of temperature and E:S ratio on the hydrolysis of dogfish (Squalus acanthias) muscle. International Journal of Food Science and Technology, 31, 419-426. doi:10.1046/j.1365-2621.1996.00351.x
[35] Guinard, J.X., Zoumas-Morse, C., Mori, L., Panyam, D. and Kilara, A. (1996) Effect of sugar and fat on the acceptability of vanilla ice cream. Journal of Dairy Science and Technology, 79, 1922-1927. doi:10.3168/jds.S0022-0302(96)76561-X
[36] Hwang, S. and Hancen, C.L. (1997) Modeling and optimization in anaerobic bioconversion of complex substrates to acetic and butyric acids. Biotechnology and Bioengineering, 54, 451-460. doi:10.1002/(SICI)1097-0290(19970605)54:5<451::AID-BIT5>3.0.CO;2-D
[37] Rastogi, N.K., Rajesh, G. and Shamala, T.R. (1998) Optimization of enzymatic degradation of coconut residue. Journal of Science Food Agriculture, 76, 129-134.
[38] Gokhale, S.V. and Lele, S.S. (2012) Optimization of convective dehydration of Beta vulgaris for color retention. Food and Bioprocess Technology, 5, 868-878.
[39] Mahajan, P.M., Gokhale, S.V. and Lele, S.S. (2010) Production of nattokinase using Bacillus natto NRRL 3666: Media optimization, scale up and kinetic modeling. Food Science Biotechnolology, 19, 1593-1603. doi:10.1007/s10068-010-0226-4
[40] Sontakke, J.B. and Yadav, G.D. (2011) Optimization and kinetic modeling of lipase catalyzed enantioselective N-acetylation of (±)-1-phenylethylamine under microwaves irradiation. Journal of Chemical Technology and Biotechnology, 86, 739-748. doi:10.1002/jctb.2582
[41] Sontakke, J.B. and Yadav, G.D. (2011) Kinetic modeling and statistical optimization of lipase catalyzed enantioselective resolution of (R,S)-2-pentanol. Industry Engineering and Chemistry Research, 50, 12975-12983. doi:10.1021/ie2012032
[42] Yadav, G.D. and Sontakke, J.B. (2011) Optimization of chiral resolution of (R,S)-1-phenylethanol by statistical methods. International Journal of Chemical Reactor Engineering, 9, A77, 1-15.
[43] Dai, D.Z. and Xia, L.M. (2006) Resolution of (R,S)-2octanol by Penicillium expansum PED-03 lipase immobilized on modified ultrastable-Y molecular sieve in microaqueous media. Process Biochemistry, 41, 1455-1460. doi:10.1016/j.procbio.2006.01.015
[44] Zhang, D.H., Bai, S., Ren, M.Y. and Sun, Y. (2008) Optimization of lipase-catalyzed enantioselective esterification of (±)-menthol in ionic liquid. Food Chemistry, 109, 72-80.
[45] Montgomery, D.C. (1984) Design and analysis of experiments. 2nd edition, John Wiley and Sons, New York.
[46] Faber, K. and Riva, S. (1992) Enzyme-catalyzed ireversible acyl transfer. Synthesis, 10, 895-910. doi:10.1055/s-1992-26255
[47] Rizzi, M., Stylos, P. and Reuss, M. (1992) A kinetic study of immobilized lipase catalysing the synthesis of isoamyl acetate by transesterification in n-hexane. Enzyme Microbial Technology, 14, 709-714. doi:10.1016/0141-0229(92)90110-A
[48] Segel, I.H. (1975) Enzyme kinetics. Wiley/Interscience, New York.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.