Optical Coherence in Astrophysics: The Powerful Alternative of Big Bang

Abstract

The coherence of the interaction of light with a collisionless gas (Einstein 1917) founds the theory of gas lasers. It is, for the understanding of universe, a simpler and more powerful tool than the big bang which requires questionable supplements (dark matter, MOND, etc.). The Impulsive Stimulated Raman Scattering (ISRS) redshifts gradually light pulses which cross excited atomic hydrogen H*, so that the redshift is a measure of the column density of H*. Thus, the distance of the hot stars, surrounded by much H*, is exaggerated by the use of Hubble’s law. Local exaggerated distances create voids in the maps of galaxies which become spongy. The interpretation of spectra of quasars, the periodicity of galaxy redshifts introduce an experimental “Karlsson’s constant” exactly computed by ISRS. The need for dark matter comes from the exaggeration of the distance, therefore the size of galaxies. Without dark matter, celestial mechanics provides a reliable distance of spiral galaxies. Coherence also introduces superradiance and mode competition that explain that only the limbs of Stromgren spheres are visible as circles maybe punctuated by an even number of dots: Too numerous, the figures assigned to gravitational lenses can be such limbs. The coincidence of the ignition of the rings of SNR1987A with the extinction of the star is due to a multiphoton coherent scattering of star light, which amplifies the superradiant emission of the rings. A blueshift of microwaves crossing H* resulting, between 10 and 15 AU, of the expansion of solar wind, explains the “anomalous acceleration” of Pioneer probes. All is obtained without any change in theories of standard spectroscopy.

Share and Cite:

J. Moret-Bailly, "Optical Coherence in Astrophysics: The Powerful Alternative of Big Bang," Journal of Modern Physics, Vol. 4 No. 8A, 2013, pp. 197-206. doi: 10.4236/jmp.2013.48A019.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] W. E. Lamb, Jr., W. P. Schleich, M. O. Scully and C. H. Townes, Reviews of Modern Physics, Vol. 71, 1999, pp. S263-S273. doi:10.1103/RevModPhys.71.S263
[2] D. H. Menzel, PASP, Vol. 43, 1931, pp. 70-74. doi:10.1086/124095
[3] Z. Zheng, The Astrophysical Journal, Vol. 578, No. 1, 2002, pp. 33-43. doi:10.1086/342400
[4] A. Einstein, Physikalische Zeitschrift, Vol. 18, 1917, pp. 121-128.
[5] M. Planck, Deutsche Physikalische Gesellschaft, Vol. 13, 1911, pp. 138-175.
[6] Y.-X. Yan, E. B. Gamble Jr. and K. A. Nelson, Journal of Chemical Physics, Vol. 83, No. 11, 1985, pp. 5391-5399. doi:10.1063/1.449708
[7] L. Dhar, J. A. Rogers and K. A. Nelson, Chemical Reviews, Vol. 94, 1994, pp. 157-193. doi:10.1021/cr00025a006
[8] I. H. Lee, K. J. Yee, K. G. Lee, E. Oh, D. S. Kim and Y. S. Lim, Journal of Applied Physics, Vol. 93, 2003, pp. 4939-4941. doi:10.1063/1.1554765
[9] G. L. Lamb Jr., Reviews of Modern Physics, Vol. 43, 1971, pp. 99-124. doi:10.1103/RevModPhys.43.99
[10] B. Stromgren, The Astrophysical Journal, Vol. 89, 1939, pp. 526-547. doi:10.1086/144074
[11] C. L. Martin and D. Arnett, The Astrophysical Journal, Vol. 447, 1995, pp. 378-390. doi:10.1086/175881
[12] C. J. Burrows, J. Krist, J. J. Hester, R. Sahai, J. T. Trauger, K. R. Stapelfeldt, J. S. Gallagher III, G. R. Ballester, S. Casertano, J. T. Clarke, D. Crisp, R. W. Evans, R. E. Griffiths, J. G. Hoessel, J. A. Holtzman, J. R. Mould, P. A. Scowen, A. M. Watson and J. A. Westphal, The Astrophysical Journal, Vol. 452, 1995, pp. 680-684.
[13] E. Michael, R. McCray, R. Chevalier, A. V. Filippenko, P. Lundqvist, P. Challis, B. Sugerman, S. Lawrence, C. S. J. Pun, P. Garnavich, R. Kirchner, A. Crotts, C. Fransson, W. Li, N. Panagia, M. Phillips, B. Schmidt, G. Sonneborn, N. Suntzeff, L. Wang and J. C. Wheeler, The Astrophysical Journal, Vol. 593, 2003, pp. 809-830. doi:10.1086/376725
[14] H. Arp, “Quasars Redshifts and Controversies,” Cambridge University Press, Cambridge, 1989.
[15] J. D. Anderson, P. A. Laing, E. L. Lau, A. S. Liu, M. M. Nieto and S. G. Turyshevet, “Study of the Anomalous Acceleration of Pioneer 10 and 11,” 2005, arXiv:gr-qc/ 0104064.
[16] G. Burbidge, The Astrophysical Journal, Vol. 154, 1968, pp. L41-L48. doi:10.1086/180265
[17] H. Peter and P. G. Judge, The Astrophysical Journal, Vol. 522, 1999, pp. 1148-1166. doi:10.1086/307672

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.