Share This Article:

hiPSCs: Reprogramming towards cell-based therapies

Abstract Full-Text HTML Download Download as PDF (Size:330KB) PP. 61-73
DOI: 10.4236/ojrm.2013.23010    3,670 Downloads   6,169 Views   Citations

ABSTRACT

Stem cell therapies show great potential for use in regenerative medicine, though advancements in safe stem cell technology need to be realized. Human induced pluripotent stem cells (hiPSCs) hold an advantage over other stem cell types for use in cell-based therapies due to their potential as an unlimited source of rejuvenated and immunocompatible SCs which do not elicit the ethical and moral debates associated with the destruction of human embryos. Towards realization of this potential this review focuses on the recent progress in DNA-and xeno-free reprogramming methods, particularly small molecule methods, as well as addresses some of the latest insights on donor cell gene expression, telomere dynamics, and epigenetic aberrations that are a potential barrier to successful widespread clinical applications.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Woolwine, P. (2013) hiPSCs: Reprogramming towards cell-based therapies. Open Journal of Regenerative Medicine, 2, 61-73. doi: 10.4236/ojrm.2013.23010.

References

[1] StemCells Inc. (2012) Reports positive interim data from spinal cord injury trial. News Releases. http://investor.stemcellsinc.com/phoenix.zhtml?c=86230&p=irol-newsArticle&ID=1730805&highlight=
[2] Gupta, et al. (2012) Neural stem cell engraftment and myelination in the human brain. Science Translational Medicine, 4, 155ra137. doi:10.1126/scitranslmed.3004373
[3] Garbern, J.Y. (2006) Pelizaeus-Merzbacher disease: Genetic and cellular pathogenesis. Cellular and Molecular Life Sciences, 64, 50-65.
[4] Giusto, E., Donegà, M., Cossetti, C. and Pluchino, S. (2006) Neuro-immune interactions of neural stem cell transplants: From animal disease models to human trials. Experimental Neurology, S0014-4886(13)00092-7. doi:10.1016/j.expneurol.2013.03.009
[5] Lo, B. and Parnham, L. (2009) Ethical issues in stem cell research. Endocrine Reviews, 30, 204-213. doi:10.1210/er.2008-0031
[6] English, K. and Wood, K.J. (2011) Immunogenicity of embryonic stem cell-derived progenitors after transplantation. Current Opinion in Organ Transplantation, 16, 90-95. doi:10.1097/MOT.0b013e3283424faa
[7] Pan, G., Wang, T., Yao, H. and Pei, D. (2012) Somatic cell reprogramming for regenerative medicine: SCNT vs. iPS cells. Bioessays, 34, 472-476. doi:10.1002/bies.201100174
[8] UN (2005) 59/280—United nations declaration on human cloning. http://daccess-dds-ny.un.org/doc/UNDOC/GEN/N04/493/06/PDF/N0449306.pdf?OpenElement
[9] Mayor, S. (2005) UN committee approves declaration on human cloning. BMJ, 330, 496.
[10] Stabile, B. (2007) Demographic profile of states with human cloning laws: Morality policy meets political economy. Politics and the Life Sciences, 26, 43-50. doi:10.2990/26_1_43
[11] Wang, S., Qu, X. and Zhao, R.C. (2012a) Clinical applications of mesenchymal stem cells. Journal of Hematology & Oncology, 5, 19. doi:10.1186/1756-8722-5-19
[12] Griffin, M.D., Ritter, T. and Mahon, B.P. (2010) Immunological aspects of allogeneic mesenchymal stem cell therapies. Human Gene Therapy, 21, 1641-1655. doi:10.1089/hum.2010.156
[13] Griffin, M.D., Ryan, A.E., Alagesan, S., Lohan, P., Treacy, O. and Ritter, T. (2013) Anti-donor immune responses elicited by allogeneic mesenchymal stem cells: What have we learned so far? Immunology & Cell Biology, 91, 40-51. doi:10.1038/icb.2012.67
[14] Choi, M.R., et al. (2012) Genome-scale DNA methylation pattern profiling of human bone marrow mesenchymal stem cells in long-term culture. Experimental & Molecular Medicine, 44, 503-512. doi:10.3858/emm.2012.44.8.057
[15] Capra, E., et al. (2012) Changes in the proteomic profile of adipose tissue-derived mesenchymal stem cells during passages. Proteome Science, 10, 46. doi:10.1186/1477-5956-10-46
[16] Brohlin, M., Kingham, P.J., Novikova, L.N., Novikov, L.N. and Wiberg, M. (2012) Aging effect on neurotrophic activity of human mesenchymal stem cells. PLoS One, 7, e45052. doi:10.1371/journal.pone.0045052
[17] Lohmann, M., et al. (2012) Donor age of human platelet lysate affects proliferation and differentiation of mesenchymal stem cells. PLoS One, 7, e37839. doi:10.1371/journal.pone.0037839
[18] Takahashi, K. and Yamanaka, S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663-676.
[19] Yamanaka, et al. (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861-872.
[20] FDA (2012) Code of federal regulations title 21, part 1271 human cells, tissues, and cellular and tissue-based products. 66 fr 5466.
[21] Zhou, W. and Freed, C.R. (2009) Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells, 27, 2667-2674. doi:10.1002/stem.201
[22] Soldner, F., et al. (2009) Parkinson’s disease patientderived induced pluripotent stem cells free of viral reprogramming factors. Cell, 136, 964-977. doi:10.1016/j.cell.2009.02.013
[23] Yu, J.Y., et al. (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science, 324, 797-801.doi:10.1126/science.1172482
[24] Jia, et al. (2010) A nonviral minicircle vector for deriving human iPS cells. Nature Methods, 7, 197-201. doi:10.1038/nmeth.1426
[25] Woltjen, et al. (2009) piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature, 458, 766-770. doi:10.1038/nature07863
[26] Kaji, K., Norrby, K., Paca, A., Mileikovsky, M., Mohseni, P. and Woltjen, K. (2009) Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature, 458, 771-775. doi:10.1038/nature07864
[27] Fusaki, N., Ban, H., Nishiyama, A., Saeki, K. and Hasegawa, M. (2009) Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences, 85, 348-362.
[28] Yakubov, E., Rechavi, G., Rozenblatt, S. and Givol, D. (2010) Reprogramming of human fibroblasts to pluripotent stem cells using mRNA of four transcription factors. Biochemical and Biophysical Research Communications, 394, 189-193. doi:10.1016/j.bbrc.2010.02.150
[29] Warren, L., et al. (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell, 7, 618-630. doi:10.1016/j.stem.2010.08.012
[30] Miyoshi, N., et al. (2011) Reprogramming of mouse and human cells to pluripotency using mature MicroRNAs. Cell Stem Cell, 8, 633-638. doi:10.1016/j.stem.2011.05.001
[31] Anokye-Danso, F., et al. (2011) Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell, 8, 376-388. doi:10.1016/j.stem.2011.03.001
[32] Kim, D., et al. (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell, 4, 472-476. doi:10.1016/j.stem.2009.05.005
[33] Esteban, M.A., et al. (2010) Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell, 6, 71-79. doi:10.1016/j.stem.2009.12.001
[34] Ichida, J.K., et al. (2009) A small-molecule inhibitor of tgf-B signaling replaces sox2 in reprogramming by inducing nanog. Cell Stem Cell, 5, 491-503. doi:10.1016/j.stem.2009.09.012
[35] Li, et al. (2012) Identification of Oct4-activating compounds that enhance reprogramming efficiency. Proceedings of the National Academy of Sciences, 109, 20853-20858. doi:10.1073/pnas.1219181110
[36] Liu, W.B., et al. (2013) Mitochondrial metabolism transition cooperates with nuclear reprogramming during induced pluripotent stem cell generation. Biochemical and Biophysical Research Communications, 431, 767-771. doi:10.1016/j.bbrc.2012.12.148
[37] Mali, P., et al. (2010) Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes. Stem Cells, 28, 713-720.
[38] Onder, T.T., et al. (2012) Chromatin-modifying enzymes as modulators of reprogramming. Nature, 483, 598-602.
[39] Lin, T.X., et al. (2009) A chemical platform for improved induction of human iPSCs. Nature Methods, 6, 805-808.
[40] Valamehr, B., et al. (2012) A novel platform to enable the high-throughput derivation and characterization of feeder-free human iPSCs. Scientific Reports, 2, 213. doi:10.1038/srep00213
[41] Wang, T., et al. (2011) The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner. Cell Stem Cell, 9, 575-587. doi:10.1016/j.stem.2011.10.005
[42] Wang, Q., et al. (2011) Lithium, an anti-psychotic drug, greatly enhances the generation of induced pluripotent stem cells. Cell Research, 21, 1424-1435. doi:10.1038/cr.2011.108
[43] Zhu, S., Wei, W. and Ding, S. (2011) Chemical strategies for stem cell biology and regenerative medicine. Annual Review of Biomedical Engineering, 13, 73-90. doi:10.1146/annurev-bioeng-071910-124715
[44] Lister, R., et al. (2011) Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature, 471, 68-73.
[45] Ruiz, S., et al. (2012) Identification of a specific reprogramming-associated epigenetic signature in human induced pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 109, 16196-16201. doi:10.1073/pnas.1202352109
[46] Suhr, S.T., et al. (2009) Telomere dynamics in human cells reprogrammed to pluripotency. PLoS One, 4, e8124. doi:10.1371/journal.pone.0008124
[47] Prigione, A., Fauler, B., Lurz, R., Lehrach, H. and Adjaye, J. (2010) The senescence-related mitochondrial/oxidative stress pathway is repressed in human induced pluripotent stem cells. Stem Cells, 28, 721-733. doi:10.1002/stem.404
[48] Suhr, S.T., et al. (2010) Mitochondrial rejuvenation after induced pluripotency. PLoS One, 5, e14095. doi:10.1371/journal.pone.0014095
[49] Yoneyama, M., et al. (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nature Immunology, 5, 730-737.
[50] Angel, M. and Yanik, M.F. (2010) Innate immune suppression enables frequent transfection with RNA encoding reprogramming proteins. PLoS One, 5, e11756. doi:10.1371/journal.pone.0011756
[51] Warren, L., Ni, Y., Wang, J. and Guo, X. (2012) Feeder-free derivation of human induced pluripotent stem cells with messenger RNA. Scientific Reports, 2, 657. doi:10.1038/srep00657
[52] Their, M., Munst, B. and Edenhofer, F. (2010) Exploring refined conditions for reprogramming cells by recombinant Oct4 protein. The International Journal of Developmental Biology, 54, 1713-1721. doi:10.1387/ijdb.103193mt
[53] Their, M., Munst, B., Mielke, S. and Edenhofer, F. (2012) Cellular reprogramming employing recombinant Sox2 protein. Stem Cells International, 2012, Article ID: 549846. doi:10.1155/2012/549846
[54] Hook, L., et al. (2011) Non-immortalized human neural stem (NS) cells as a scalable platform for cellular assays. Neurochemistry International, 59, 432-444. doi:10.1016/j.neuint.2011.06.024
[55] Singh, A., et al. (2013) Adhesion strength-based, labelfree isolation of human pluripotent stem cells. Nature Methods, 10, 438-444.
[56] Street, C.A. and Bryan, B.A. (2011) Rho kinase proteins: Pleiotropic modulators of cell survival and apoptosis. Anticancer Research, 31, 3645-3657.
[57] Hong, H., et al. (2009) Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature, 460, 1132-1135.
[58] Yoshida, Y., Takahashi, K., Okita, K., Ichisaka, T. and Yamanaka, S. (2009) Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell, 5, 237-241. doi:10.1016/j.stem.2009.08.001
[59] Covello, K.L., et al. (2006) HIF-2alpha regulates Oct-4: Effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes & Development, 20, 557-570. doi:10.1101/gad.1399906
[60] Zhu, S.Y., et al. (2010) Reprogramming of human primary somatic cells by OCT4 and chemical compounds. Cell Stem Cell, 7, 651-655. doi:10.1016/j.stem.2010.11.015
[61] Staerk, J., et al. (2011) Pan-src family kinase inhibitors replace Sox2 during the direct reprogramming of somatic cells. Angewandte Chemie International Edition, 50, 5734-5736. doi:10.1002/anie.201101042
[62] Lian, X., Selekman, J., Bao, X., Hsiao, C., Zhu, K. and Palecek, S.P. (2013) A small molecule inhibitor of src family kinases promotes simple epithelial differentiation of human pluripotent stem cells. PLoS One, 8, e60016. doi:10.1371/journal.pone.0060016
[63] Kim, J.B., et al. (2009) Direct reprogramming of human neural stem cells by OCT4. Nature, 461, 649-653.
[64] Hezroni, H., Sailaja, B.S. and Meshorer, E. (2011) Pluripotency-related, valproic acid (VPA)-induced genome-wide histone H3 Lysine 9 (H3K9) acetylation patterns in embryonic stem cells. The Journal of Biological Chemistry, 286, 35977-35988. doi:10.1074/jbc.M111.266254
[65] Huangfu, D., et al. (2008) Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nature Biotechnology, 26, 1269-1275.
[66] Wang, W.-P., et al. (2012) The EP300, KDM5A, KDM6A and KDM6B chromatin regulators cooperate with KLF4 in the transcriptional activation of POU5F1. PLoS One, 7, e52556. doi:10.1371/journal.pone.0052556
[67] Shi, Y., Desponts, C., Do, J.T., Hahm, H.S., Schler, H.R. and Ding, S. (2008) Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell, 3, 568-574. doi:10.1016/j.stem.2008.10.004
[68] Epsztejn-Litman, S., et al. (2008) De novo DNA methyllation promoted by G9a prevents reprogramming of embryonically silenced genes. Nature Structural & Molecular Biology, 15, 1176-1183.
[69] Vedadi, M., et al. (2011) A chemical probe selectively inhibits G9a and GLP methyltransferase activity in cells. Nature Chemical Biology, 7, 566-574.
[70] Chen, X.J., et al. (2012) G9a/GLP-dependent histone H3K9me2 patterning during human hematopoietic stem cell lineage commitment. Genes & Develoment, 26, 2499-2511. doi:10.1101/gad.200329.112
[71] Brueckner, B., et al. (2005) Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases. Cancer Research, 65, 6305-6311. doi:10.1158/0008-5472.CAN-04-2957
[72] Niwa, H., Miyazaki, J. and Smith, A.G. (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nature Genetics, 24, 372-376.
[73] You, J.S., Kelly, T.K., De Carvalho, D.D., Taberlay, P.C., Liang, G. and Jones, P.A. (2011) OCT4 establishes and maintains nucleosome-depleted regions that provide additional layers of epigenetic regulation of its target genes. Proceedings of the National Academy of Sciences of the United States of America, 108, 14497-14502. doi:10.1073/pnas.1111309108
[74] Bhutani, N., et al. (2013) A critical role for AID in the initiation of reprogramming to induced pluripotent stem cells. The FASEB Journal, 27, 1107-1113. doi:10.1096/fj.12-222125
[75] Chew, J.-L., et al. (2005) Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells. Molecular and Cellular Biology, 25, 6031-6046. doi:10.1128/MCB.25.14.6031-6046.2005
[76] Adewumi, O., et al. (2007) Characterization of human embryonic stem cell lines by the international stem cell initiative. Nature Biotechnology, 25, 803-816. doi:10.1038/nbt1318
[77] Ghosh, Z., Wilson, K.D., Wu, Y., Hu, S., Quertermous, T. and Wu, J.C. (2010) Persistent donor cell gene expression among human induced pluripotent stem cells contributes to differences with human embryonic stem cells. PLoS One, 5, e8975. doi:10.1371/journal.pone.0008975
[78] Chung, H.C., Lin, R.C., Logan, G.J., Alexander, I.E., Sachdev, P.S. and Sidhu, K.S. (2012) Human induced pluripotent stem cells derived under feeder-free conditions display unique cell cycle and DNA replication gene profiles. Stem Cells and Develoment, 21, 206-216. doi:10.1089/scd.2010.0440
[79] Ilic, D., et al. (2012) Derivation and feeder-free propagation of human embryonic stem cells under xeno-free conditions. Cytotherapy, 14, 122-128. doi:10.3109/14653249.2011.623692
[80] Baker, D.E.C., et al. (2007) Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nature Biotechnology, 25, 207-215. doi:10.1038/nbt1285
[81] Mayshar, Y., et al. (2010) Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell, 7, 521-531. doi:10.1016/j.stem.2010.07.017
[82] Gore, A., et al. (2011) Somatic coding mutations in human induced pluripotent stem cells. Nature, 471, 63-67.
[83] Hussein, S.M., et al. (2011) Copy number variation and selection during reprogramming to pluripotency. Nature, 471, 58-62.
[84] Jones, P.A. and Baylin, S.B. (2007) The epigenomics of cancer. Cell, 128, 683-692. doi:10.1016/j.cell.2007.01.029
[85] Semi, K., Matsuda, Y., Ohnishi, K. and Yamada, Y. (2013) Cellular reprogramming and cancer development. International Journal of Cancer, 132, 1240-1248. doi:10.1002/ijc.27963
[86] Watanabe, A., Yamada, Y. and Yamanaka, S. (2013) Epigenetic regulation in pluripotent stem cells: A key to breaking the epigenetic barrier. Philosophical Transactions of the Royal Society B, 368, Article ID: 20120292. doi:10.1098/rstb.2012.0292
[87] Tsai, C.C., Su, P.F., Huang, Y.F., Yew, T.L. and Hung, S.C. (2012) Oct4 and nanog directly regulate Dnmt1 to maintain self-renewal and undifferentiated state in mesenchymal stem cells. Molecular Cell, 47, 169-182. doi:10.1016/j.molcel.2012.06.020
[88] Guo, X.D., et al. (2013) microRNA-29b is a novel mediator of Sox2 function in the regulation of somatic cell reprogramming. Cell Research, 23, 142-156. doi:10.1038/cr.2012.180
[89] Jin, B., Li, Y. and Robertson, K.D. (2011) DNA methylation: Superior or subordinate in the epigenetic hierarchy? Genes & Cancer, 2, 607-617. doi:10.1177/1947601910393957
[90] Lehnertz, B., et al. (2003) Suv39h-mediated histone H3 Lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Current Biology, 13, 1192-1200. doi:10.1016/S0960-9822(03)00432-9
[91] Vire, E., et al. (2006) The polycomb group protein EZH2 directly controls DNA methylation. Nature, 439, 871-874.
[92] Li, B.-Z., et al. (2011) Histone tails regulate DNA methylation by allosterically activating de novo methyltransferase. Cell Research, 21, 1172-1181. doi:10.1038/cr.2011.92
[93] Mansour, A.A.F., et al. (2012) The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming. Nature, 488, 409-413.
[94] Chaturvedi, C.-P., et al. (2012) Maintenance of gene silencing by the coordinate action of the H3K9 methyltransferase G9a/KMT1C and the H3K4 demethylase Jarid1a/KDM5A. Proceedings of the National Academy of Sciences of the United States of America, 109, 18845-18850. doi:10.1073/pnas.1213951109
[95] Carey, B.W., et al. (2011) Reprogramming factor stoichiometry influences the epigenetic state and biological properties of induced pluripotent stem cells. Cell Stem Cell, 9, 588-598. doi:10.1016/j.stem.2011.11.003
[96] Parsons, X.H. (2012) The dynamics of global chromatin remodeling are pivotal for tracking the normal pluripotency of human embryonic stem cells. Anatomy & Physiology, S3, Article ID: 002.
[97] Soufi, A., Donahue, G. and Zaret, K.S. (2012) Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome. Cell, 151, 994-1004. doi:10.1016/j.cell.2012.09.045
[98] Tsai, C-C., et al. (2010) Overexpression of hTERT increases stem-like properties and decreases spontaneous differentiation in human mesenchymal stem cell lines. Journal of Biomedical Science, 17, 64. doi:10.1186/1423-0127-17-64
[99] Yehezkel, S., et al. (2011) Reprogramming of telomeric regions during the generation of human induced pluripotent stem cells and subsequent differentiation into fibroblast-like derivatives. Epigenetics, 6, 63-75. doi:10.4161/epi.6.1.13390
[100] Agarwal, S., et al. (2010) Telomere elongation in induced pluripotent stem cells from dyskeratosis congenita patients. Nature, 464, 292-296.
[101] Hoffmeyer, K., et al. (2012) Wnt/B-catenin signaling regulates telomerase in stem cells and cancer cells. Science, 336, 1549-1554. doi:10.1126/science.1218370
[102] Wang, F., et al. (2011) Molecular insights into the heterogeneity of telomere reprogramming in induced pluripotent stem cells. Cell Research, 22, 757-768. doi:10.1038/cr.2011.201
[103] O’Callaghan, N.J. and Fenech, M. (2011) A quantitative PCR method for measuring absolute telomere length. Biological Procedures Online, 13, 3. doi:10.1186/1480-9222-13-3

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.