Complement C3a signaling mediates production of angiogenic factors in mesenchymal stem cells

Abstract

A major portion of the beneficial effect of mesenchymal stem cells (MSC) is due to the production of trophic and angiogenic factors by these cells, and one of the efforts to improve the therapeutic efficacy of these cells lies in enhancing this capacity. Since there is complement activation in all areas of tissue injury, and both C3a and C5a activate MSC, it was asked whether stimulation with C3a or C5a would upregulate the production of trophic factors by MSC. C3a caused significant up-regulation of various angiogenic factors, including VEGF, CXCL8/IL-8 and IL-6. In contrast there was no detectable production of the pro-inflammatory cytokines TNF-α and IL-1β in spite of nuclear translocation of NFκB. Although C5a also caused moderate up-regulation of angiogenic factors, the effect was borderline significant. Furthermore the production of angiogenic factors induced by C3a was of physiological relevance: Supernatants of MSCs cultured under serum-free conditions induced minimal tube formation of HUVECs as an in vitro measure of angiogenesis; tube formation was considerably enhanced, when supernatants from C3a-stimulated MSC were used, while C3a itself had no direct angiogenic effect on HUVECs. The signaling cascade responsible for the production of angiogenic factors by C3a or C5a could be defined as activation of the rho cascade which was necessary for nuclear translocation of NFκB p65 and of phospho-ERK1/2. Although rho was only transiently activated, inhibition of the rho or “downstream of it” of the NFκB pathway, prevented C3a-and C5a-induced up-regulation of angiogenic factors.

Share and Cite:

DiScipio, R. , Khaldoyanidi, S. , Moya-Castro, R. and Schraufstatter, I. (2013) Complement C3a signaling mediates production of angiogenic factors in mesenchymal stem cells. Journal of Biomedical Science and Engineering, 6, 1-13. doi: 10.4236/jbise.2013.68A1001.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Caplan, A.I. and Dennis, J.E. (2006) Mesenchymal stem cells as trophic mediators. Journal of Cellular Biochemistry, 98, 1076-1084. doi:10.1002/jcb.20886
[2] Phinney, D.G. and Prockop, D.J. (2007) Concise review: Mesenchymal stem/multi-potent stromal cells (MSCs): The ctate of transdifferentiation and modes of tissue repair— Current views. Stem Cells, 25, 2896-2902. doi:10.1634/stemcells.2007-0637
[3] Aggarwal, S. and Pittenger, M.F. (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105, 1815-1822. doi:10.1182/blood-2004-04-1559
[4] Maggini, J., Mirkin, G., Bognanni, I., Holmberg, J., Piazzon, I.M., Nepomnaschy, I., et al. (2010) Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile, PLoS ONE, 5, e9252. doi:10.1371/journal.pone.0009252
[5] Hare J.M., Traverse J.H., Henry T.D., Dib N., Strumpf R.K., Schulman S.P., et al. (2009) A randomized, doubleblind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. Journal of the American College for Cardiology, 54, 2277-2286. doi:10.1016/j.jacc.2009.06.055
[6] Lucchini, G., Introna, M., Dander, E., Rovelli, A., Balduzzi, A., Bonanomi, S., et al. (2010) Platelet-lysate-expanded mesenchymal stromal cells as a salvage therapy for severe resistant graft-versus-host disease in a pediatric population. Biology of Blood Marrow Transplantation, 16, 1293-1301. doi:10.1016/j.bbmt.2010.03.017
[7] Sackstein, R., Merzaban, J.S., Cain, D.W., Dagia, N.M., Spencer, J.A., Lin, C.P., et al. (2008) Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nature Medicine, 14, 181-187. doi:10.1038/nm1703
[8] Bartunek, J., Croissant, J.D., Wijns, W., Gofflot, S., de Lavareille, A., Vanderheyden, M., et al. (2007) Pretreatment of adult bone marrow mesenchymal stem cells with cardiomyogenic growth factors and repair of the chronically infarcted myocardium. American Journal of Physiology Heart Circulatiory Physiology, 292, H1095-1104. doi:10.1152/ajpheart.01009.2005
[9] Herrmann, J.L., Wang, Y., Abarbanell, A.M., Weil, B.R., Tan, J. and Meldrum, D.R. (2010) Preconditioning mesenchymal stem cells with transforming growth factor-alpha improves mesenchymal stem cell-mediated cardioprotection. Shock, 33, 24-30. doi:10.1097/SHK.0b013e3181b7d137
[10] Pons, J., Huang, Y., Arakawa-Hoyt, J., Washko, D., Takagawa, J., Ye, J., et al. (2008) VEGF improves survival of mesenchymal stem cells in infarcted hearts. Biochemical Biophysical Research Communication, 376, 419-422. doi:10.1016/j.bbrc.2008.09.003
[11] Hahn, J.Y., Cho, H.J., Kang, H.J., Kim, T.S., Kim, M.H., Chung, J.H., et al. (2008) Pre-treatment of mesenchymal stem cells with a combination of growth factors enhances gap junction formation, cytoprotective effect on cardiomyocytes, and therapeutic efficacy for myocardial infarction. Journal of the American College of Cardiology, 51, 933-943. doi:10.1016/j.jacc.2007.11.040
[12] Schmidt, A., Ladage, D, Schinkothe, T., Klausmann, U., Ulrichs, C., Klinz, F.J., et al. (2006) Basic fibroblast growth factor controls migration in human mesenchymal stem cells. Stem Cells, 24, 1750-1758. doi:10.1634/stemcells.2005-0191
[13] Ponte, A.L., Marais, E., Gallay, N., Langonne, A., Delorme, B., Herault, O., Charbord, P. and Domenech, J. (2007) The in vitro migration capacity of human bone marrow mesenchymal stem cells: Comparison of chemokine and growth factor chemotactic activities. Stem Cells, 25, 1737-1745. doi:10.1634/stemcells.2007-0054
[14] Sordi, V., Malosio, M.L., Marchesi, F., Mercalli, A., Melzi, R., Giordano, T., et al. (2005) Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood, 106, 419-427. doi:10.1182/blood-2004-09-3507
[15] Honczarenko, M., Le, Y., Swierkowski, M., Ghiran, I., Glodek, A.M. and Silberstein, L.E. (2006) Human bone marrow stromal cells express a distinct set of biologically functional chemokine receptors. Stem Cells, 24, 1030-1041. doi:10.1634/stemcells.2005-0319
[16] Fox, J.M., Chamberlain, G., Ashton, B.A. and Middleton, J. (2007) Recent advances into the understanding of mesenchymal stem cell trafficking. British Journal of Haematology, 137, 491-502. doi:10.1111/j.1365-2141.2007.06610.x
[17] Schraufstatter, I.U, DiScipio, R.G., Zhao, M. and Khaldoyanidi, S.K. (2009) C3a and C5a are chemotactic factors for human mesenchymal stem cells, which cause prolonged ERK1/2 phosphorylation. Journal of Immunology, 182, 3827-3836. doi:10.4049/jimmunol.0803055
[18] Fernandez, H.N., Henson, P.M., Otani, A. and Hugli, T.E. (1978) Chemotactic response to human C3a and C5a anaphylatoxins. I. Evaluation of C3a and C5a leukotaxis in vitro and under simulated conditions in vivo. Journal of Immunology, 120, 109-115.
[19] Norgauer, J., Dobos, G., Kownatzki, E., Dahinden, C., Burger, R., Kupper, R., et al. (1993) Complement fragment C3a stimulates Ca2+ influx in neutrophils via a pertussis toxin sensitive G protein. European Journal of Biochemistry, 217, 289-294. doi:10.1111/j.1432-1033.1993.tb18245.x
[20] Daffern, P.J., Pfeifer, P.H., Ember, J.A. and Hugli, T.E. (1995) C3a is a chemotaxin for human eosinophils but not for neutrophils. I. C3a stimulation is secondary to eosinophil activation. Journal of Experimental Medicine, 181, 2119-2127. doi:10.1084/jem.181.6.2119
[21] Zwirner, J., Gotze, O., Moser, A., Sieber, A., Begemann, G., Kapp, A., et al. (1997) Blood and skin-derived monocytes/macrophages respond to C3a but not C3a (desArg) with a transient release of calcium via a pertussis toxin sensitive pathway. European Journal of Immunology, 27, 2317-2322. doi:10.1002/eji.1830270928
[22] Elsner, J., Oppermann, M., Czech, W. and Kapp, A. (1994) C3a activates the respiratory burst in human polymorphonuclear neutrophilic leukocytes via pertussis toxin-sensitive G-proteins. Blood, 83, 3324-3331.
[23] Klos, A., Bank, S., Gietz, C., Bautsch, W., Kohl, J., Burg, M. and Kretzschmar, T. (1992) C3a receptor on dibutyryl-cAMP-differentiated U937 cells and human neutronphils: The human C3a receptor characterized by functional responses and 125I-C3a binding. Biochemistry, 31, 11274-11282. doi:10.1021/bi00161a003
[24] DiScipio, R.G., Daffern, P.J., Jagels, M.A., Broide, D.H. and Sriramarao, P. (1999) A comparison of C3a and C5amediated stable adhesion of rolling eosinophils in postcapillary venules and transendothial migration in vitro and in vivo. Journal of Immunology, 162, 1127-1136.
[25] Guo, R.F. and Ward, P.A. (2005) Role of C5a in inflammatory responses. Annual Review of Immunology, 23, 821-852. doi:10.1146/annurev.immunol.23.021704.115835
[26] Schraufstatter, I.U., Trieu, K., Sikora, L., Sriramarao, P. and DiScipio R. (2002) Complement C3a and C5a induce different signal transduction cascades in endothelial cells. Journal of Immunology, 169, 2102-2110.
[27] Venkatesha, R.T., Berla Thangam, E., Zaidi, A.K. and Ali, H. (2005) Distinct regulation of C3a-induced MCP-1/CCL2 and RANTES/CCL5 production in human mast cells by extracellular signal regulated kinase and PI3 kinase. Molecular Immunology, 42, 581-587. doi:10.1016/j.molimm.2004.09.009
[28] Chao, T.S., Ember, J.A., Wang, M., Bayon, Y., Hugli, T.E. and Ye, R.D. (1999) Role of the second extracellular loop of human C3a receptor in agonist binding and receptor function. Journal of Biological Chemistry, 274, 9721-9728. doi:10.1074/jbc.274.14.9721
[29] Lee, D.K., Lanca, A.J., Cheng, R., Nguyen, T., Ji, X.D., Gobeil, F., et al. (2004) Agonist-independent nuclear localization of the apelin, angiotensin AT1, and bradykinin B2 receptors. Journal of Biological Chemistry, 279, 7901-7908. doi:10.1074/jbc.M306377200
[30] Lu, D., Yang, H. and Raizada, M.K. (1996) Angiotensin II regulation of neuromodulation: Downstream signaling mechanism from activation of mitogen-activated protein kinase. Journal of Cell Biology, 135, 1609-1617. doi:10.1083/jcb.135.6.1609
[31] Brunet, A., Roux, D., Lenormand, P., Dowd, S., Keyse, S. and Pouyssegur, J. (1999) Nuclear translocation of p42/ p44 mitogen-activated protein kinase is required for growth factor-induced gene expression and cell cycle entry. EMBO Journal, 18, 664-674. doi:10.1093/emboj/18.3.664
[32] Goetzl, E.J. (2007) Diverse pathways for nuclear signaling by G protein-coupled receptors and their ligands. FASEB Journal, 21, 638-642. doi:10.1096/fj.06-6624hyp
[33] Hsu, M.H., Wang, M., Browning, D.D., Mukaida, N. and Ye, R.D. (1999) NF-κB activation is required for C5a-induced interleukin-8 gene expression in mononuclear cells. Blood, 93, 3241-3249.
[34] Huang, S., Chen, L.Y., Zuraw, B.L., Ye, R.D. and Pan, Z.K. (2001) Chemoattractant-stimulated NF-κB activation is dependent on the jow molecular weight GTPase rhoA. Journal of Biological Chemistry, 276, 40977-40981. doi:10.1074/jbc.M105242200
[35] van den Berk, L.C.J., Jansen, B.J.H., Siebers-Vermeulen, K.G.C., Roelofs, H., Figdor, C.G., Adema, G.J., et al. (2010) Mesenchymal stem cells respond to TNF but do not produce TNF. Journal of Leukocyte Biology, 87, 283-289. doi:10.1189/jlb.0709467
[36] Li, Z., Wei, H., Deng, L., Cong, X. and Chen, X. (2010) Expression and secretion of interleukin-1β, tumour necrosis factor-α and interleukin-10 by hypoxia and serum-deprivation-stimulated mesenchymal stem cells. FEBS Journal, 277, 3688-3698. doi:10.1111/j.1742-4658.2010.07770.x
[37] Caunt, C.J., Finch, A.R., Sedgley, K.R. and McArdle, C.A. (2006) Seven-transmembrane receptor signalling and ERK compartmentalization. Trends in Endocrinology and Metabolism, 17, 276-283. doi:10.1016/j.tem.2006.07.008
[38] Sasaki, T., Irie-Sasaki, J., Jones, R.G., Oliveira-dos-Santos, A.J., Stanford, W.L., Bolon, B., et al. (2000) Function of PI3K in thymocyte development, T cell activation, and neutrophil migration. Science, 287, 1040-1046. doi:10.1126/science.287.5455.1040
[39] Yasumoto, K., Okamoto, S., Mukaida, N., Murakami, S., Mai, M. and Matsushima, K. (1992) Tumor necrosis factor alpha and interferon gamma synergistically induce interleukin 8 production in a human gastric cancer cell line through acting concurrently on AP-1 and NF-kB-like binding sites of the interleukin 8 gene. Journal of Biological Chemistry, 267, 22506-22511.
[40] Bobrovnikova-Marjon, E.V., Marjon, P.L., Barbash, O., Vander Jagt, D.L. and Abcouwer, S.F. (2004) Expression of angiogenic factors vascular endothelial growth factor and interleukin-8/CXCL8 is highly responsive to ambient glutamine availability: Role of nuclear factor-kappaB and activating protein-1. Cancer Research, 64, 4858-4869. doi:10.1158/0008-5472.CAN-04-0682
[41] Fang, H.Y., Hughes, R., Murdoch, C., Coffelt, S.B., Biswas, S.K., Harris, A.L., et al. (2009) Hypoxia-inducible factors 1 and 2 are important transcriptional effectors in primary macrophages experiencing hypoxia. Blood, 114, 844-859. doi:10.1182/blood-2008-12-195941
[42] Sparmann, A. and Bar-Sagi, D. (2004) Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell, 6, 447-458. doi:10.1016/j.ccr.2004.09.028
[43] Rak, J., Mitsuhashi, Y., Sheehan, C., Tamir, A., Viloria Petit, A., Filmus, J., et al. (2000) Oncogenes and tumor angiogenesis: Differential modes of vascular endothelial growth factor up-regulation in ras-transformed epithelial cells and fibroblasts. Cancer Research, 60, 490-498.
[44] Zhao, M., Discipio, R.G., Wimmer, A.G. and Schraufstatter, I.U. (2006) Regulation of CXCR4-mediated nuclear translocation of ERK1/2. Molecular Pharmacology, 69, 66-75.
[45] Maekawa, M., Ishizaki, T., Boku, S., Watanabe, N., Fujita, A., Iwamatsu, A., et al. (1999) Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science, 285, 895-899. doi:10.1126/science.285.5429.895
[46] Posern, G., Sotiropoulos, A. and Treisman, R. (2002) Mutant actins demonstrate a role for unpolymerized actin in control of transcription by serum response factor. Molecular Biology of the Cell, 13, 4167-4178. doi:10.1091/mbc.02-05-0068
[47] Beqaj, S., Jakkaraju, S., Mattingly, R.R., Pan, D. and Schuger, L. (2002) High RhoA activity maintains the undifferentiated mesenchymal cell phenotype, whereas RhoA down-regulation by laminin-2 induces smooth muscle myogenesis. Journal of Cell Biology, 156, 893-903. doi:10.1083/jcb.200107049
[48] Marais, R., Wynne, J. and Treisman, R. (1993) The SRF accessory protein Elk-1 contains a growth factor-regulated transcriptional activation domain. Cell, 73, 381-393. doi:10.1016/0092-8674(93)90237-K
[49] Gayer, C.P., Craig, D.H., Flanigan, T.L., Reed, T.D., Cress, D.E. and Basson, M.D. (2010) ERK regulates strain-induced migration and proliferation from different subcellular locations. Journal of Cellular Biochemistry, 109, 711-725.
[50] Zhao, Y., Lv, M., Lin, H.S., Hong, Y., Yang, F.C., Sun, Y.L., et al. (2012) ROCK1 induces ERK nuclear translocation in PDGF-BB-stimulated migration of rat vascular smooth muscle cells. IUBMB Life, 64, 194-202. doi:10.1002/iub.598
[51] McBeath, R., Pirone, D.M., Nelson, C.M., Bhadriraju, K. and Chen, C.S. (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Developmental Cell, 6, 483-495. doi:10.1016/S1534-5807(04)00075-9
[52] Meriane, M., Duhamel, S., Lejeune, L., Galipeau, J. and Annabi, B. (2006) Cooperation of matrix metalloproteinases with the RhoA/Rho kinase and mitogen-activated protein kinase kinase-1/extracellular signal-regulated kinase signaling pathways is required for the sphingosine-1-phosphate-induced mobilization of marrow-derived stromal cells. Stem Cells, 24, 2557-2565. doi:10.1634/stemcells.2006-0209
[53] Pappu, R., Schwab, S.R., Cornelissen, I., Pereira, J.P., Regard, J.B., Xu, Y., et al. (2007) Promotion of lymphocyte egress into blood and lymph by distinct sources of sphingosine-1-phosphate. Science, 316, 295-298. doi:10.1126/science.1139221
[54] Bokisch, V.A. and Muller-Eberhard, H.J. (1970) Anaphylatoxin inactivator of human plasma: Its isolation and characterization as a carboxypeptidase. Journal of Clnical Investigation, 49, 2427-2436. doi:10.1172/JCI106462
[55] Hart, M.J., Jiang, X., Kozasa, T., Roscoe, W., Singer, W.D., Gilman, A.G., et al. (1998) Direct stimulation of the guanine nucleotide exchange activity of p115 Rho-GEF by galpha13. Science, 280, 2112-2114. doi:10.1126/science.280.5372.2112
[56] Prockop, D.J. (2009) Repair of tissues by adult stem/ progenitor cells (MSCs): Controversies, myths, and changing paradigms. Molecular Therapy, 17, 939-946. doi:10.1038/mt.2009.62
[57] Crisan, M., Yap, S., Casteilla, L., Chen, C.W., Corselli, M., Park, T.S., et al. (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell, 11, 301-313. doi:10.1016/j.stem.2008.07.003
[58] Hung, S.C., Pochampally, R.R., Chen, S.C., Hsu, S.C. and Prockop, D.J. (2007) Angiogenic effects of human multipotent stromal cell conditioned medium activate the PI3K-Akt pathway in hypoxic endothelial cells to inhibit apoptosis, increase survival, and stimulate angiogenesis. Stem Cells, 25, 2363-2370. doi:10.1634/stemcells.2006-0686
[59] Boomsma, R.A. and Geenen, D.L. (2012) Mesenchymal stem cells secrete multiple cytokines that promote angiogenesis and have contrasting effects on chemotaxis and apoptosis. PLoS ONE, 7, e35685. doi:10.1371/journal.pone.0035685
[60] Monsinjon, T., Gasque, P., Chan, P., Ischenko, A., Brady, J.J. and Fontaine, M. (2003) Regulation by complement C3a and C5a anaphylatoxins of cytokine production in human umbilical vein endothelial cells. FASEB Journal, 17, 1003-1014. doi:10.1096/fj.02-0737com
[61] Klinz, F.J., Schmidt A., Schinkothe, T., Arnhold, S., Desai, B., Popken, F., et al. (2005) Phospho-eNOS Ser-114 in human mesenchymal stem cells: Constitutive phosphorylation, nuclear localization and upregulation during mitosis. European Journal of Cell Biology, 8, 809-818. doi:10.1016/j.ejcb.2005.06.003
[62] Rahpeymai, Y., Hietala, M.A., Wilhelmsson, U., Fotheringham, A., Davies, I., Nilsson, A.K., et al. (2006) Complement: A novel factor in basal and ischemia-induced neurogenesis. The EMBO Journal, 25, 1364-1374. doi:10.1038/sj.emboj.7601004
[63] Perez-Terzic, C., Behfar, A., Mery, A., Van Deursen, J.M.A., Terzic, A. and Puceat, M. (2003) Structural adaptation of the nuclear pore complex in stem cell-derived cardiomyocytes. Circulation Research, 92, 444-452. doi:10.1161/01.RES.0000059415.25070.54
[64] Ratajczak, J., Reca, R., Kucia, M., Majka, M., Allendorf, D.J., Baran, J.T., et al. (2004) Mobilization studies in mice deficient in either C3 or C3a receptor (C3aR) reveal a novel role for complement in retention of hematopoietic stem/progenitor cells in bone marrow. Blood, 103, 2071-2078. doi:10.1182/blood-2003-06-2099

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.