Share This Article:

Quantification by Signal to Noise Ratio of Active Infrared Thermography Data Processing Techniques

Abstract Full-Text HTML Download Download as PDF (Size:945KB) PP. 20-26
DOI: 10.4236/opj.2013.34A004    4,489 Downloads   6,917 Views   Citations

ABSTRACT

In this paper, the use of a signal to noise ratio (SNR) is proposed for the quantification of the goodness of some selected processing techniques of thermographic images, such as differentiated absolute contrast, skewness and kurtosis based algorithms, pulsed phase transform, principal component analysis and thermographic signal reconstruction. A new hybrid technique is also applied (PhAC—Phase absolute contrast), it combines three different processing techniques: phase absolute contrast, pulsed phase thermography and thermographic signal reconstruction. The quality of the results is established on the basis of the values of the parameter SNR, assessed for the present defects in the analyzed specimen, which enabled to quantify and compare their identification and the quality of the results of the employed technique.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

R. Hidalgo-Gato, J. Andrés, J. López-Higuera and F. Madruga, "Quantification by Signal to Noise Ratio of Active Infrared Thermography Data Processing Techniques," Optics and Photonics Journal, Vol. 3 No. 4A, 2013, pp. 20-26. doi: 10.4236/opj.2013.34A004.

References

[1] P. Shull, “Nondestructive Evaluation: Theory, Techniques and Applications,” Marcel Dekker, New York, 2002. doi:10.1201/9780203911068
[2] D. Benítez Hernán, C. Ibarra-Castanedo, H. B. Abdel, X. Maldague, H. Loaiza and E. Caicedo, “Procesamiento de Imágenes Infrarrojas Para la Detección de Defectos en Materiales,” Tecnura, Universidad Distrital Francisco José de Caldas, Bogotá, Colombia, Vol. 10, No. 20, 2007, pp. 40-51.
[3] G. Fernández and A. Daniel, “Contribuciones a las Técnicas no Destructivas Para Evaluación y Prueba de Procesos y Materiales Basadas en Radiaciones Infrarrojas,” Tesis Doctoral, Universidad de Cantabria, Departamento de Tecnología Electrónica e Ingeniería de Sistemas y Automática, 2006.
[4] F. Madruga, P. Albendea, C. Ibarra-Castanedo and J. Lopez-Higuera, “Signal to Noise Ratio (SNR) Comparison for Lockin Thermographic Data Processing Methods in CFRP Specimen,” Qirt10, Quantitative Infrared Thermography, Québec, 2010, pp. 1-6.
[5] P. Albendea, F. Madruga, A. Cobo and J. Lopez-Higuera, “Signal to Noise Ratio (SNR) Comparison for Pulsed Thermographic Data Processing Methods Applied to Welding Defect Detection,” Qirt10, Quantitative Infrared Thermography, Québec, 2010.
[6] J. N. Zalameda, N. Rajic and W. P. Winfree, “A Comparison of Image Processing Algorithms for Thermal Non-Destructive Evaluation,” SPIE Proceedings of Thermosense XXV, Vol. 5073, 2003, pp. 374-385.
[7] F. J. Madruga, C. Ibarra-Castanedo, O. M. Conde, et al., “Infrared Thermography Processing Based on Higher-Order Statistics,” NDT & E International, Vol. 43, No. 8, 2010, pp. 661-666. doi:10.1016/j.ndteint.2010.07.002
[8] F. J. Madruga, C. Ibarra-Castanedo, O. M. Conde, et al., “Enhanced Contrast Detection of Subsurface Defects by Pulsed Infrared Thermography Based on the Fourth Order Statistic Moment, Kurtosis,” Proceedings of the SPIE— The International Society for Optical Engineering, 14 April 2009, Article ID: 72990U.
[9] X. P. V. Maldague, “Theory and Practice of Infrared Technology for Nondestructive Testing,” John Wiley & Sons, New York, 2001.
[10] C. Ibarra-Castanedo and X. Maldague, “Pulsed Phase Thermography Reviewed,” Quantitative InfraRed Thermography Journal, Vol. 1, No. 1, 2004.
[11] C. Ibarra-Castanedo, “Quantitative Subsurface Defect Evaluation by Pulsed Phase Thermography: Depth Retrieval with the Phase,” Ph.D. Thesis, Université Laval, 2005.
[12] N. Rajic, “Principal Component Thermography for Flaw Contrast Enhancement and Flaw Depth Characterisation in Composite Structures,” Composite Structures, Vol. 58, No. 4, 2002, pp. 521-528.
[13] J. N. Zalameda, N. Rajic and W. P. Winfree, “A Comparison of Image Processing Algorithms for Thermal Nondestructive Evaluation,” Orlando, 2003, pp. 374-385.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.