Share This Article:

A Bioeconomic Model for Sustainable Grazing of Old World Bluestem under Uncertainty

Abstract Full-Text HTML Download Download as PDF (Size:291KB) PP. 362-368
DOI: 10.4236/nr.2013.44044    3,168 Downloads   4,402 Views  

ABSTRACT

"WW B. Dahl", a perennial old world bluestem (OWB) grass, has been promoted as a forage suitable for dryland grazing. Dryland grazing of OWB is however inherently risky economically and ecologically, and may not be sustainable while remaining profitable. In this paper we develop a biological and economic single-season model of dryland grazing given production and price uncertainty, and identify a stocking rate that maximizes expected net revenue, subject to a sustainability constraint. We then simulate the distribution of net revenues, and find that probability of loss is greater than 35%, and median profit is roughly $30/ha.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

A. Benson and C. Zilverberg, "A Bioeconomic Model for Sustainable Grazing of Old World Bluestem under Uncertainty," Natural Resources, Vol. 4 No. 4, 2013, pp. 362-368. doi: 10.4236/nr.2013.44044.

References

[1] V. G. Allen, P. Brown, R. Kellison, E. Segarra, T. Wheeler, P. A. Dotray, J. C. Conkwright, C. J. Green and V. Acosta-Martinez, “Integrating Cotton and Beef Production to Reduce Water Withdrawal from the Ogallala Aquifer in the Southern High Plains Regions,” Agronomy Journal, Vol. 97, No. 2, 2005, pp. 556-567. doi:10.2134/agronj2005.0556
[2] C. Ortega-Ochoa, C. Villalobos, C. Britton, D. Wester, D. Ethridge and D. Wills, “A Profitability Analysis of a Beef Production on WW-B. Dahl Pasture under Different Combinations of Irrigation and Supplement Feeding,” The Texas Journal of Agriculture and Natural Resources, Vol. 20, No. 1, 2007, pp. 42-51.
[3] D. Philipp, V. G. Allen, R. J. Lascano, C. P. Brown and D. B. Wester, “Forage Nutritive Value and Morphology of Three Old World Bluestems under a Range of Irrigation Levels,” Crop Science, Vol. 45, No. 6, 2005, pp. 2258-2268. doi:10.2135/cropsci2004.0669
[4] D. Philipp, V. G. Allen, R. B. Mitchell, C. P. Brown and D. B. Wester, “Production and Water Use Efficiency of Three Old World Bluestems,” Crop Science, Vol. 47, No. 2, 2007, pp. 787-794. doi:10.2135/cropsci06.05.0340
[5] J. C. Burns and D. S. Fisher, “Steer Performance and Pasture Productivity of Caucasian Bluestem at Three Forage Masses,” Agronomy Journal, Vol. 102, No. 3, 2010, pp. 834-842. doi:10.2134/agronj2009.0468
[6] C. Ortega-Ochoa, “Effect of Levels of Irrigation on Forage Standing Crop and Quality of WW-B. Dahl (Bothriochloa bladhii) Pasture under Summer Grazing,” PhD Dissertation, Texas Tech University, Lubbock, 2006.
[7] O. J. Chaco, “A Practical Equation for Pasture Growth under Grazing,” Grass and Forage Science, Vol. 48, No. 4, 1993, pp. 387-394. doi:10.1111/j.1365-2494.1993.tb01873.x
[8] J. D. Dudensing, “An Economic Analysis of Cattle Weight Gain Response to Nitrogen Fertilization and Irrigation on WW-B. Dahl Bluestem,” MS Thesis, Texas Tech University, Lubbock, 2005.
[9] A. Benson, P. Zhu, M. Farmer and C. Villalobos, “Profitability of a Dryland Grazing System Suitable for the Texas High Plains,” The Texas Journal of Agriculture and Natural Resources, Vol. 24, 2011, pp. 62-73.
[10] R. Martin, “Economic Evaluation of an Integrated Cropping System with Cotton,” MS Thesis, Texas Tech University, Lubbock, 2005.
[11] J. P. Ritten, W. M. Frasier, C. T. Bastian and S. T. Gray, “Optimal Rangeland Stocking Decisions under Stochastic and Climate-Impacted Weather,” American Journal of Agricultural Economics, Vol. 92, No. 4, 2010, pp. 1242-1255. doi:10.1093/ajae/aaq052
[12] K. D. Young and C. R. Shumway, “Cow-Calf Producers’ Perceived Profit Maximization Objective: A Logit Analysis,” Southern Journal of Agricultural Economics, Vol. 23, No. 1, 1991, pp. 129-136.
[13] L. A. Torell, N. R. Rimbey, J. A. Tanaka and S. A. Bailey, “The Lack of a Profit Motive for Ranching: Implications for Policy Analysis,” Annual Meeting of the Society for Range Management, Kailua-Kona, 17-23 February 2001, pp. 1-12.
[14] L. A. Torell, N. R. Rimbey, O. A. Ramirez and D. W. McCollum, “Income Earning Potential versus Consumptive Amenities in Determining Ranchland Values,” Journal of Agricultural and Resource Economics, Vol. 30, No. 3, 2005, pp. 537-560.
[15] R. E. Sosebee, D. B. Wester, J. C. Villalobos, C. M. Britton, C. Wan and H. Nofal, “How Grasses Grow—How Plant Growth Relates to Grazing Management,” Proceedings of the 2nd National Conference on Grazing Lands, Nashville, 7-10 December 2003, pp. 117-125.
[16] A. J. Smart, J. D. Derner, J. R. Hendrickson, R. L. Gillen, B. H. Dunn, E. M Mousel, P. S. Johnson, R. N. Gates, K. K. Sedivec, K. R. Harmoney, J. D. Volesky and K. C. Olson, “Effects of Grazing Pressure on Efficiency of Grazing on North American Great Plains Rangelands,” Rangeland Ecology and Management, Vol. 63, No. 5, 2010, pp. 397-406. doi:10.2111/REM-D-09-00046.1
[17] V. G. Allen, P. Brown, R. Kellison, P. Green, C. J. Zilverberg, P. Johnson, J. Weinheimer, T. Wheeler, E. Segarra, V. Acosta-Martínez, T. Zobeck and J. C. Conkwright, “Integrating Cotton and Beef Production to Reduce Water Withdrawal from the Ogallala Aquifer in the Southern High Plains: I. Ten-Years of Effect on Water Use and Productivity,” Agronomy Journal, Vol. 104, No. 6, 2012, pp. 1625-1642. doi:10.2134/agronj2012.0121
[18] D. Philipp, “Influence of Varying Replacement of Potential Evapotranspiration on Water Use Efficiency and Nutritive Value of Three Old World Bluestems (Bothriochloa spp.),” PhD Dissertation, Texas Tech University, Lubbock, 2004.
[19] C. Ortega-Ochoa, M. Farmer and C. Villalobos, “A Pasture-Based Model for Extended Drought Management, Long-Term Sustainability, and Economic Viability in the Southern High Plains,” Forage and Grazinglands, 2007, in press. doi:10.1094/FG-2007-1108-01-MG
[20] C. W. Clark, “Mathematical Bioeconomics: The Mathematics of Conservation,” 3rd Edition, John Wiley & Sons, Inc., Hoboken, 2010.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.