Share This Article:

An Analytical Air Pollution Model with Time Dependent Eddy Diffusivity

Abstract Full-Text HTML Download Download as PDF (Size:465KB) PP. 16-23
DOI: 10.4236/jep.2013.48A1003    3,002 Downloads   4,461 Views   Citations


Air pollution transport and dispersion in the atmospheric boundary layer are modeled by the advection-diffusion equation, that is, essentially, a statement of conservation of the suspended material in an incompressible flow. Many models simulating air pollution dispersion are based upon the solution (numerical or analytical) of the advection-diffusion equation assuming turbulence parameterization for realistic physical scenarios. We present the general time dependent three-dimensional solution of the advection-diffusion equation considering a vertically inhomogeneous atmospheric boundary layer for arbitrary vertical profiles of wind and eddy-diffusion coefficients. Numerical results and comparison with experimental data are shown.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

T. Tirabassi, M. Vilhena, D. Buske and G. Degrazia, "An Analytical Air Pollution Model with Time Dependent Eddy Diffusivity," Journal of Environmental Protection, Vol. 4 No. 8A, 2013, pp. 16-23. doi: 10.4236/jep.2013.48A1003.


[1] T. Tirabassi, “Operational Advanced Air Pollution Modelling,” Pure and Applied Geophysics, Vol. 160, No. 1-2, 2003, pp. 5-16. doi:10.1007/s00024-003-8762-y
[2] D. Buske, M. T. Vilhena, B. Bodmann and T. Tirabassi, “Analytical Model for Air Pollution in the Atmospheric Boundary Layer,” In: M. Khare, Ed., Air Pollution, Vol. 1, InTech, Rijeka, 2012, pp. 39-58.
[3] D. M. Moreira, M. T. Vilhena, D. Buske and T. Tirabassi, “The State-of-Art of the GILTT Method to Simulate Pollutant Dispersion in the Atmosphere,” Atmospheric Research, Vol. 92, No. 1, 2009, pp. 1-17. doi:10.1016/j.atmosres.2008.07.004
[4] G. Adomian, “A New Approach to Nonlinear Partial Differential Equations,” Journal of Mathematical Analysis and Applications, Vol. 102, No. 2, 1984, pp. 420-434. doi:10.1016/0022-247X(84)90182-3
[5] G. Adomian, “A Review of the Decomposition Method in Applied Mathematics,” Journal of Mathematical Analysis and Applications, Vol. 135, No. 2, 1988, pp. 501-544. doi:10.1016/0022-247X(88)90170-9
[6] S. Wortmann, M. T. Vilhena, D. M. Moreira and D. Buske, “A New Analytical Approach to Simulate the Pollutant Dispersion in the PBL,” Atmospheric Environment, Vol. 39, No. 12, 2005, pp. 2171-2178. doi:10.1016/j.atmosenv.2005.01.003
[7] D. M. Moreira, M. T. Vilhena, T. Tirabassi, D. Buske and R. Cotta, “Near Source Atmospheric Pollutant Dispersion Using the New GILTT Method,” Atmospheric Environment, Vol. 39, No. 34, 2005, pp. 6290-6295. doi:10.1016/j.atmosenv.2005.07.008
[8] J. C. Kaimal, J. C. Wyngaard, et al., “Turbulence Structure in the Convective Boundary Layer,” Journal of the Atmospheric Sciences, Vol. 33, No. 11, 1976, pp. 2152-2169. doi:10.1175/1520-0469(1976)033<2152:TSITCB>2.0.CO;2
[9] S. J. Caughey and S. G. Palmer, “Some Aspects of Turbulence Structure through the Depth of the Convective Boundary Layer,” Quarterly Journal of the Royal Meteorological Society, Vol. 105, No. 446, 1979, pp. 811-827. doi:10.1002/qj.49710544606
[10] D. M. Moreira, M. T. Vilhena, D. Buske and T. Tirabassi, “The GILTT Solution of the Advection-Diffusion Equation for an Inhomogeneous and Nonstationary PBL,” Atmospheric Environment, Vol. 40, No. 17, 2006, pp. 3186-3194. doi:10.1016/j.atmosenv.2006.01.035
[11] S. E. Gryning and E. Lyck, “Atmospheric Dispersion from Elevated Source in an Urban Area: Comparison between Tracer Experiments and Model Calculations,” Journal of Climate and Applied Meteorology, Vol. 23, No. 4, 1984, pp. 651-654. doi:10.1175/1520-0450(1984)023<0651:ADFESI>2.0.CO;2
[12] S. E. Gryning, A. A. M. Holtslag, J. S. Irwin and B. Siversten, “Applied Dispersion Modelling Based on Meteorological Scaling Parameters,” Atmospheric Environment, Vol. 21, No. 1, 1987, pp. 79-89. doi:10.1016/0004-6981(87)90273-3
[13] T. Tirabassi and U. Rizza, “Boundary Layer Parameterization for a Non-Gaussian Puff Model,” Journal of Applied Meteorology, Vol. 36, No. 8, 1997, pp. 1031-1037. doi:10.1175/1520-0450(1997)036<1031:BLPFAN>2.0.CO;2
[14] G. A. Degrazia, H. F. Campos Velho and J. C. Carvalho, “Non-Local Exchange Coefficients for the Convective Boundary Layer Derived from Spectral Properties,” Contributions to Atmospheric Physics, Vol. 70, No. 1, 1997, pp. 57-64.
[15] H. A. Panofsky and J. A. Dutton, “Atmospheric Turbulence,” John Wiley & Sons, New York, 1984.
[16] J. S. Irwin, “A Theoretical Variation of the Wind Profile Power-Low Exponent as a Function of Surface Roughness and Stability,” Atmospheric Environment, Vol. 13, No. 1, 1979, pp. 191-194. doi:10.1016/0004-6981(79)90260-9
[17] J. C. Chang and S. R. Hanna, “Air Quality Model Performance Evaluation,” Meteorology and Atmospheric Physics, Vol. 87, No. 1-3, 2004, pp. 167-196. doi:10.1007/s00703-003-0070-7

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.