Scientific Research

An Academic Publisher

Effect of Non-Uniform Basic Temperature Gradient on the Onset of Rayleigh-Bénard-Marangoni Electro-Convectionin a Micropolar Fluid

The effects of electric field and non-uniform basic temperature gradient on the onset of Rayleigh-Bénard-Marangoni convection in a micropolar fluid are studied using the Galerkin technique. The eigenvalues are obtained for an upper free/adiabatic and lower rigid/isothermal boundaries. The microrotation is assumed to vanish at the boundaries. A linear stability analysis is performed. The influence of various micropolar fluid parameters and electric Rayleigh number on the onset of convection has been analysed. Six different non-uniform temperature profiles are considered and their comparative influence on onset is discussed.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

*Applied Mathematics*, Vol. 4 No. 8, 2013, pp. 1180-1188. doi: 10.4236/am.2013.48158.

[1] | J. R. A. Pearson, “On Convection Cells Induced by Sur face Tension,” Journal of Fluid Mechanics, Vol. 4, No. 5, 1958, pp. 489-500. doi:10.1017/S0022112058000616 |

[2] | D. A. Nield, “Surface Tension and Buoyancy Effects in Cellular Convection,” ZAMM, Vol. 17, No. 1, 1966, pp. 131-139. doi:10.1007/BF01594092 |

[3] | N. Rudraiah, V. Ramachandramurthy and O. P. Chandana, “Surface Tension Driven Convection Subjected to Rota tion and Non-Uniform Temperature Gradient,” Interna tional Journal of Heat and Mass Transfer, Vol. 28, No. 8, 1985, pp. 1621-1624. doi:10.1016/0017-9310(85)90264-9 |

[4] | T. Maekawa and I. Tanasawa, “Effect of Magnetic Field and Buoyancy on Onset of Marangoni Convection,” In ternational Journal of Heat and Mass Transfer, Vol. 31, No. 2, 1988, pp. 285-293. doi:10.1016/0017-9310(88)90011-7 |

[5] | G. S. R. Sarma, “Marangoni Convection in a Fluid Layer under the Action of a Transverse Magnetic Field,” Space Research, Vol. 19, 1979, pp. 575-578. |

[6] | G. S. R. Sarma, “Marangoni Convection in a Liquid Lay er under the Simultaneous Action of a Transverse Mag netic Field and Rotation,” Advances in Space Research, Vol. 1, No. 5, 1981, pp. 55-58. doi:10.1016/0273-1177(81)90151-4 |

[7] | M. Takashima, “Surface Tension Driven Instability in a Horizontal Liquid Layer with a Deformable Free Surface Part I Steady Convection,” Journal of the Physical Soci ety of Japan, Vol. 50, No. 8, 1981, pp. 2745-2750. doi:10.1143/JPSJ.50.2745 |

[8] | S. K. Wilson, “The Effect of a Uniform Magnetic Field on the Onset of Steady Bénard-Marangoni Convection in a Layer of Conducting Fluid,” Journal of Engineering Mathematics, Vol. 27, No. 2, 1993, pp. 161-188. doi:10.1007/BF00127480 |

[9] | S. K. Wilson, “The Effect of a Uniform Magnetic Field on the Onset of Steady Marangoni Convection in a Layer of Conducting Fluid with a Prescribed Heat Flux at Its Lower Boundary,” Physics of Fluids, Vol. 6, No. 11, 1994, pp. 3591-3560. doi:10.1063/1.868417 |

[10] | I. Hashim and S. K. Wilson, “The Onset of Bénard-Ma rangoni Convection in a Horizontal Layer of Fluid,” In ternational Journal of Engineering Science, Vol. 37, No. 5, 1999, pp. 643-662. doi:10.1016/S0020-7225(98)00084-6 |

[11] | R. J. Turnbull, “Electro Convective Instability with a Sta bilizing Temperature Gradient. I. Theory,” Physics of Fluids, Vol. 11, No. 12, 1968, pp. 2588-2596. doi:10.1063/1.1691864 |

[12] | R. J. Turnbull and R. J. Melcher, “Electrohydrodynamic Rayleigh-Taylor Bulk Instability,” Physics of Fluids, Vol. 12, No. 6, 1969, pp. 1160-1166. doi:10.1063/1.1692646 |

[13] | M. Takashima and K. D. Aldridge, “The Stability of a Horizontal Layer of Dielectric Fluid under the Simulta neous Action of a Vertical dc Electric Field and a Vertical Temperature Gradient,” The Quarterly Journal of Mecha nics and Applied Mathematics, Vol. 29, No. 1, 1976, pp. 71-87. |

[14] | P. J. Stiles, “Electro Thermal Convection in Dielectric Li quids,” Chemical Physics Letters, Vol. 179, No. 3, 1991, pp. 311-315. doi:10.1016/0009-2614(91)87043-B |

[15] | P. J. Stiles, F. Lin and P. J. Blennerhassett, “Convective Heat Transfer through Polarized Dielectric Liquids,” Phy sics Fluids, Vol. 5, No. 12, 1993, pp. 3273-3279. doi:10.1063/1.858684 |

[16] | P. G. Siddeshwar, “Oscillatory Convection in Viscoelas tic, Ferromagnetic/Dielectric Liquids,” International Jour nal of Modern Physics B, Vol. 16, No. 17-18, 2002, pp. 2629-2635. doi:10.1142/S0217979202012761 |

[17] | P. G. Siddeshwar and A. Abraham, “Effect of Time-Peri odic Boundary Temperatures/Body Force on Rayleigh Bénard Convection in a Ferromagnetic Fluid,” Acta Me chanica, Vol. 161, No. 3-4, 2003, pp. 131-150. |

[18] | P. G. Siddeshwar and A. Abraham, “Rayleigh-Bénard Con vection in a Dielectric Liquid: Imposed Time-Periodic Boundarytemperatures,” Chamchuri Journal of Mathema tics, Vol. 1, No. 2, 2009, pp. 105-121. |

[19] | P. G. Siddeshwar and A. T. Y. Chan, “Ferrohydrodyna mic and Electrohydrodynamics Instability in Viscoelastic Liquids: An Analogy,” Proceedings 4th International Conference on Fluid Mechanics, Dalian, 20-30 July 2004, pp. 167-172. |

[20] | I. S. Shivakumara, M. S. Nagashree and K. Hemalatha, “Electrothermoconvective Instability in a Heat Generat ing Dielectric Fluid Layer,” International Communica tions in Heat and Mass Transfer, Vol. 34, No. 9-10, 2007, pp. 1041-1047. doi:10.1016/j.icheatmasstransfer.2007.05.006 |

[21] | N. Rudraiah, B. M. Shankar and C.-O. Ng, “Electrohy drodynamic Stability of Couple Stress Fluid Flow in a Channel Occupied by a Porous Medium,” Special Topics & Reviews in Porous Media—An International Journal, Vol. 2, No. 1, 2011, pp. 11-22. |

[22] | P. G. Siddeshwar and D. Radhakrishna, “Linear and Nonlinear Electroconvection under AC Electric Field,” Communications in Nonlinear Science and Numerical Simulation, Vol. 17, No. 7, 2012, pp. 2883-2895. doi:10.1016/j.cnsns.2011.11.009 |

[23] | A. C. Eringen, “Theory of Micropolar Fluids,” International Journal of Engineering Science, Vol. 16, No. 1, 1966, p. 1. |

[24] | B. Datta and V. U. K. Sastry, “Thermal Instability of a Horizontal Layer of Micropolar Fluid Heated from Be low,” International Journal of Engineering Science, Vol. 14, No. 7, 1976, pp. 631-637. doi:10.1016/0020-7225(76)90005-7 |

[25] | P. G. Siddheshwar and S. Pranesh, “Magnetoconvection in a Micropolar Fluid,” International Journal of Engi neering Science, USA, Vol. 36, No. 10, 1998, pp. 1173 1181. doi:10.1016/S0020-7225(98)00013-5 |

[26] | P. G. Siddheshwar and S. Pranesh, “Magnetoconvection in Fluids with Suspended Particles under 1 g and ug,” In ternational Journal of Aerospace Science and Technology, France, Vol. 6, No. 2, 2001, pp. 105-114. doi:10.1016/S1270-9638(01)01144-0 |

[27] | P. G. Siddheshwar and S. Pranesh, “Suction-Injection Effects on the Onset of Rayleigh-Bénard-Marangoni Con vection in a Fluid with Suspended Particles,” Acta Me chanica, Germany, Vol. 152, No. 1-4, 2001, pp. 241-252. doi:10.1007/BF01176958 |

[28] | S. Pranesh and R. Baby, “Effect of Non-Uniform Tem perature Gradient on the Onset of Rayleigh-Bénard Elec tro Convection in a Micropolar Fluid,” Applied Mathe matics, Vol. 3, No. 5, 2012, pp. 442-450. doi:10.4236/am.2012.35067 |

[29] | S. Pranesh and A. Kumar, “Effect of Non-Uniform Basic Concentration Gradient on the Onset of Double-Diffusive Convection in Micropolar Fluid,” Applied Mathematics, Vol. 3, No. 5, 2012, pp. 417-424. doi:10.4236/am.2012.35064 |

Copyright © 2018 by authors and Scientific Research Publishing Inc.

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.