Share This Article:

Development of Oncolytic Reovirus for Cancer Therapy

Abstract Full-Text HTML Download Download as PDF (Size:561KB) PP. 1100-1115
DOI: 10.4236/jct.2013.46127    4,896 Downloads   7,610 Views   Citations


Reovirus, a double-stranded RNA virus, can infect many types of cancer cells and cause oncolysis. Mammalian reovirus has exhibited promising anticancer activity in clinical trials and holds great advantages and promise as an anticancer agent. Reovirus is not associated with any serious human diseases, naturally targets and destroys tumors, and lacks the DNA synthesis stage, thus avoiding potential DNA insertion mutations. This review discusses the properties of reovirus related to oncolysis and the mechanisms of oncolytic selection, and summarizes the preclinical and clinical studies that have led to the current Phase III trial. In addition, three major challenges in the development of reovirus-mediated oncolytic therapy are discussed. These are: the mechanisms of reovirus oncolysis remain to be fully characterized; the host immune responses should be manipulated to enhance viral anti-tumor effects; and the efficacy of reovirus oncolysis may be further improved by developing new vectors and studying other double-stranded RNA viruses.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

E. Sahin, M. Egger, K. McMasters and H. Zhou, "Development of Oncolytic Reovirus for Cancer Therapy," Journal of Cancer Therapy, Vol. 4 No. 6, 2013, pp. 1100-1115. doi: 10.4236/jct.2013.46127.


[1] M. Ramos-Alvarez and A. B. Sabin, “Characteristics of Poliomyelitis and Other Enteric Viruses Recovered in Tissue Culture from Healthy American Children,” Proceedings of the Society for Experimental Biology and Medicine, Vol. 87, No. 3, 1954, pp. 655-661. doi:10.3181/00379727-87-21474
[2] A. B. Sabin, “Reoviruses. A New Group of Respiratory and Enteric Viruses Formerly Classified as ECHO Type 10 Is Described,” Science, Vol. 130, No. 3386, 1959, pp. 1387-1389. doi:10.1126/science.130.3386.1387
[3] S. H. Alloussi, M. Alkassar, S. Urbschat, N. Graf and B. Gartner, “All Reovirus Subtypes Show Oncolytic Potential in Primary Cells of Human High-Grade Glioma,” Oncology Reports, Vol. 26, No. 3, 2011, pp. 645-649.
[4] L. A. Schiff, M. L. Nibert and K. L. Tyler, “Orthoreoviruses and Their Replication,” In: Fields Virology, 5th Edition, Lippincott Williams and Wilkins, 2007, pp. 1853-1915.
[5] K. W. Boehme, K. M. Guglielmi and T. S. Dermody, “Reovirus Nonstructural Protein Signa1 Is Required for Establishment of Viremia and Systemic Dissemination,” Proceedings of the National Academy of Science USA, Vol. 106, No. 47, 2009, pp. 19986-19991.
[6] M. M. Becker, M. I. Goral, P. R. Hazelton, G. S. Baer, S. E. Rodgers, E. G. Brown, et al., “Reovirus sigmaNS Protein Is Required for Nucleation of Viral Assembly Complexes and Formation of Viral Inclusions,” Journal of Virology, Vol. 75, No. 3, 2001, pp. 1459-1475. doi:10.1128/JVI.75.3.1459-1475.2001
[7] T. Kobayashi, J. D. Chappell, P. Danthi and T. S. Dermody, “Gene-Specific Inhibition of Reovirus Replication by RNA Interference,” Journal of Virology, Vol. 80, No. 18, 2006, pp. 9053-9063.
[8] P. W. Lee, E. C. Hayes and W. K. Joklik, “Protein Sigma 1 Is the Reovirus Cell Attachment Protein,” Virology, Vol. 108, No. 1, 1981, pp. 156-163. doi:10.1016/0042-6822(81)90535-3
[9] D. M. Reiter, J. M. Frierson, E. E. Halvorson, T. Kobayashi, T. S. Dermody and T. Stehle, “Crystal Structure of Reovirus Attachment Protein Sigma1 in Complex with Sialylated Oligosaccharides,” PLoS Pathogens, Vol. 7, No. 8, 2011. doi:10.1371/journal.ppat.1002166
[10] K. Reiss, J. E. Stencel, Y. Liu, B. S. Blaum, D. M. Reiter, T. Feizi, et al., “The GM2 Glycan Serves as a Functional Coreceptor for Serotype 1 Reovirus,” PLoS Pathogens, Vol. 8, No. 12, 2012. doi:10.1371/journal.ppat.1003078
[11] E. S. Barton, J. L. Connolly, J. C. Forrest, J. D. Chappell and T. S. Dermody, “Utilization of Sialic Acid as a Coreceptor Enhances Reovirus Attachment by Multistep Adhesion Strengthening,” Journal of Biological Chemistry, Vol. 276, No. 3, 2001, pp. 2200-2211. doi:10.1074/jbc.M004680200
[12] J. D. Chappell, A. E. Prota, T. S. Dermody and T. Stehle, “Crystal Structure of Reovirus Attachment Protein Sigma1 Reveals Evolutionary Relationship to Adenovirus Fiber,” EMBO Journal, Vol. 21, No. 1-2, 2002, pp. 1-11. doi:10.1093/emboj/21.1.1
[13] E. S. Barton, J. C. Forrest, J. L. Connolly, J. D. Chappell, Y. Liu, F. J. Schnell, et al., “Junction Adhesion Molecule Is a Receptor for Reovirus,” Cell, Vol. 104, No. 3, 2001, pp. 441-451. doi:10.1016/S0092-8674(01)00231-8
[14] J. A. Campbell, P. Schelling, J. D. Wetzel, E. M. Johnson, J. C. Forrest, G. A. Wilson, et al., “Junctional Adhesion Molecule a Serves as a Receptor for Prototype and FieldIsolate Strains of Mammalian Reovirus,” Journal of Virology, Vol. 79, No. 13, 2005, pp. 7967-7978. doi:10.1128/JVI.79.13.7967-7978.2005
[15] M. S. Maginnis, J. C. Forrest, S. A. Kopecky-Bromberg, S. K. Dickeson, S. A. Santoro, M. M. Zutter, et al., “Beta1 Integrin Mediates Internalization of Mammalian Reovirus,” Journal of Virology, Vol. 80, No. 6, 2006, pp. 2760-2770. doi:10.1128/JVI.80.6.2760-2770.2006
[16] M. S. Maginnis, B. A. Mainou, A. Derdowski, E. M. Johnson, R. Zent and T. S. Dermody, “NPXY Motifs in the Beta1 Integrin Cytoplasmic Tail Are Required for Functional Reovirus Entry,” Journal of Virology, Vol. 82, No. 7, 2008, pp. 3181-3191. doi:10.1128/JVI.01612-07
[17] M. Ehrlich, W. Boll, A. Van Oijen, R. Hariharan, K. Chandran, M.L. Nibert, et al., “Endocytosis by Random Initiation and Stabilization of Clathrin-Coated Pits,” Cell, Vol. 118, No. 5, 2004, pp. 591-605. doi:10.1016/j.cell.2004.08.017
[18] D. H. Rubin, D. B. Weiner, C. Dworkin, M. I. Greene, G. G. Maul and W. V. Williams, “Receptor Utilization by Reovirus Type 3: Distinct Binding Sites on Thymoma and Fibroblast Cell Lines Result in Differential Compartmentalization of Virions,” Microbial Pathogens, Vol. 12, No. 5, 1992, pp. 351-365. doi:10.1016/0882-4010(92)90098-9
[19] L. J. Sturzenbecker, M. Nibert, D. Furlong and B. N. Fields, “Intracellular Digestion of Reovirus Particles Requires a Low pH and Is an Essential Step in the Viral Infectious Cycle,” Journal of Virology, Vol. 61, No. 8, 1987, pp. 2351-2361.
[20] J. Borsa, B. D. Morash, M. D. Sargent, T. P. Copps, P. A. Lievaart and J. G. Szekely, “Two Modes of Entry of Reovirus Particles into L Cells,” Journal of General Virology, Vol. 45, No. 1, 1979, pp. 161-170. doi:10.1099/0022-1317-45-1-161
[21] W. L. Schulz, A. K. Haj and L. A. Schiff, “Reovirus Uses Multiple Endocytic Pathways for Cell Entry,” Journal of Virology, Vol. 86, No. 23, 2012, pp. 12665-12675. doi:10.1128/JVI.01861-12
[22] B. A. Mainou and T. S. Dermody, “Transport to Late Endosomes Is Required for Efficient Reovirus Infection,” Journal of Virology, Vol. 86, No. 16, 2012, pp. 8346-8358. doi:10.1128/JVI.00100-12
[23] E. Maratos-Flier, M. J. Goodman, A. H. Murray and C. R. Kahn, “Ammonium Inhibits Processing and Cytotoxicity of Reovirus, a Nonenveloped Virus,” Journal of Clinical Investigation, Vol. 78, No. 4, 1986, pp. 1003-1007. doi:10.1172/JCI112653
[24] D. H. Ebert, J. Deussing, C. Peters and T. S. Dermody, “Cathepsin L and Cathepsin B Mediate Reovirus Disassembly in Murine Fibroblast Cells,” Journal of Biological Chemistry, Vol. 277, No. 27, 2002, pp. 24609-24617. doi:10.1074/jbc.M201107200
[25] J. W. Golden, J. A. Bahe, W. T. Lucas, M. L. Nibert and L. A. Schiff, “Cathepsin S Supports Acid-Independent Infection by Some Reoviruses,” Journal of Biological Chemistry, Vol. 279, No. 10, 2004, pp. 8547-8557. doi:10.1074/jbc.M309758200
[26] G. S. Baer, D. H. Ebert, C. J. Chung, A. H. Erickson and T. S. Dermody, “Mutant Cells Selected during Persistent Reovirus Infection Do Not Express Mature Cathepsin L and Do Not Support Reovirus Disassembly,” Journal of Virology, Vol. 73, No. 11, 1999, pp. 9532-9543.
[27] J. A. Madren, P. Sarkar and P. Danthi, “Cell Entry-Associated Conformational Changes in Reovirus Particles Are Controlled by Host Protease Activity,” Journal of Virology, Vol. 86, No. 7, 2012, pp. 3466-3473. doi:10.1128/JVI.06659-11
[28] K. Chandran, D. L. Farsetta and M. L. Nibert, “Strategy for Nonenveloped Virus Entry: A Hydrophobic Conformer of the Reovirus Membrane Penetration Protein Micro 1 Mediates Membrane Disruption,” Journal of Virology, Vol. 76, No. 19, 2002, pp. 9920-9933. doi:10.1128/JVI.76.19.9920-9933.2002
[29] S. Liemann, K. Chandran, T. S. Baker, M. L. Nibert and S. C. Harrison, “Structure of the Reovirus MembranePenetration Protein, Mu1, in a Complex with Is Protector Protein, Sigma3,” Cell, Vol. 108, No. 2, 2002, pp. 283-295. doi:10.1016/S0092-8674(02)00612-8
[30] L. Zhang, K. Chandran, M. L. Nibert and S. C. Harrison, “Reovirus Mu1 Structural Rearrangements That Mediate Membrane Penetration,” Journal of Virology, Vol. 80, No. 24, 2006, pp.12367-12376. doi:10.1128/JVI.01343-06
[31] T. Ivanovic, M. A. Agosto, L. Zhang, K. Chandran, S. C. Harrison and M. L. Nibert, “Peptides Released from Reovirus Outer Capsid Form Membrane Pores That Recruit virus Particles,” EMBO Journal, Vol. 27, No. 8, 2008, pp. 1289-1298. doi:10.1038/emboj.2008.60
[32] M. A. Agosto, T. Ivanovic and M. L. Nibert, “Mammalian Reovirus, a Nonfusogenic Nonenveloped Virus, Forms Size-Selective Pores in a Model Membrane,” Proceedings of the National Academy of Science USA, Vol. 103, No. 44, 2006, pp. 16496-16501. doi:10.1073/pnas.0605835103
[33] M. L. Nibert, A. L. Odegard, M. A. Agosto, K. Chandran and L. A. Schiff, “Putative Autocleavage of Reovirus Mu1 Protein in Concert with Outer-Capsid Disassembly and Activation for Membrane Permeabilization,” Journal of Molecular Biology, Vol. 345, No. 3, 2005, pp. 461-474. doi:10.1016/j.jmb.2004.10.026
[34] L. Zhang, M. A. Agosto, T. Ivanovic, D. S. King, M. L. Nibert and S. C. Harrison, “Requirements for the Formation of Membrane Pores by the Reovirus Myristoylated Micro1N Peptide,” Journal of Virology, Vol. 83, No. 14, 2009, pp. 7004-7014. doi:10.1128/JVI.00377-09
[35] M. Schonberg, S. C. Silverstein, D. H. Levin and G. Acs, “Asynchronous Synthesis of the Complementary Strands of the Reovirus Genome,” Proceedings of the National Academy of Science USA, Vol. 68, No. 2, 1971, pp. 505-508. doi:10.1073/pnas.68.2.505
[36] M. Yamakawa, Y. Furuichi and A. J. Shatkin, “Reovirus Transcriptase and Capping Enzymes Are Active in Intact Virions,” Virology, Vol. 118, No. 1, 1982, pp. 157-168. doi:10.1016/0042-6822(82)90329-4
[37] Y. Furuichi, M. Morgan, S. Muthukrishnan and A. J. Shatkin, “Reovirus Messenger RNA Contains a Methylated, Blocked 5'-Terminal Structure: m-7G(5')ppp (5') GMpCp,” Proceedings of the National Academy of Science United States of America, Vol. 72, No. 1, 1975, pp. 362-366. doi:10.1073/pnas.72.1.362
[38] M. A. McCrae, “Terminal Structure of Reovirus RNAs,” Journal of General Virololgy, Vol. 55, No. 2, 1981, pp. 393-403. doi:10.1099/0022-1317-55-2-393
[39] B. N. Fields, C. S. Raine and S. G. Baum, “TemperatureSensitive Mutants of Reovirus Type 3: Defects in Viral Maturation as Studied by Immunofluorescence and Electron Microscopy,” Virology, Vol. 43, No. 3, 1971, pp. 569-578. doi:10.1016/0042-6822(71)90282-0
[40] S. C. Silverstein and P. H. Schur, “Immunofluorescent Localization of Double-Stranded RNA in Reovirus-Infected Cells,” Virology, Vol. 41, No. 3, 1970, pp. 564-566. doi:10.1016/0042-6822(70)90178-9
[41] A. H. Sharpe, L. B. Chen and B. N. Fields, “The Interaction of Mammalian Reoviruses with the Cytoskeleton of Monkey Kidney CV-1 Cells,” Virology, Vol. 120, No. 2, 1982, pp. 399-411. doi:10.1016/0042-6822(82)90040-X
[42] J. S. Parker, T. J. Broering, J. Kim, D. E. Higgins and M. L. Nibert, “Reovirus Core Protein μ2 Determines the Filamentous Morphology of Viral Inclusion Bodies by Interacting with and Stabilizing Microtubules,” Journal of Virology, Vol. 76, No. 9, 2002, pp. 4483-4496. doi:10.1128/JVI.76.9.4483-4496.2002
[43] G. Hashiro, P. C. Loh and J. T. Yau, “The Preferential Cytotoxicity of Reovirus for Certain Transformed Cell Lines,” Archives of Virology, Vol. 54, No. 4, 1977, pp. 307-315. doi:10.1007/BF01314776
[44] M. R. Duncan, S. M. Stanish and D. C. Cox, “Differential Sensitivity of Normal and Transformed Human Cells to Reovirus Infection,” Journal of Virology, Vol. 28, No. 2, 1978, pp. 444-449.
[45] J. E. Strong, D. Tang and P. W. Lee, “Evidence That the Epidermal Growth Factor Receptor on Host Cells Confers Reovirus Infection Efficiency,” Virology, Vol. 197, No. 1, 1993, pp. 405-411. doi:10.1006/viro.1993.1602
[46] J. E. Strong, M. C. Coffey, D. Tang, P. Sabinin and P. W. Lee, “The Molecular Basis of Viral Oncolysis: Usurpation of the Ras Signaling Pathway by Reovirus,” EMBO Journal, Vol. 17, No. 12, 1998, pp. 3351-3362. doi:10.1093/emboj/17.12.3351
[47] K. L. Norman, K. Hirasawa, A. D. Yang, M. A. Shields and P. W. Lee, “Reovirus Oncolysis: the Ras/RalGEF/ p38 Pathway Dictates Host Cell Permissiveness to Reovirus Infection,” Proceedings of the National Academy of Science of the United States of America, Vol. 101, No. 30, 2004, pp. 11099-11104. doi:10.1073/pnas.0404310101
[48] J. A. McCubrey, L. S. Steelman, W. H. Chappell, S. L. Abrams, E. W. Wong, F. Chang, et al., “Roles of the Raf/MEK/ERK Pathway in Cell Growth, Malignant Transformation and Drug Resistance,” Biochimica et Biophysica Acta, Vol. 1773, No. 8, 2007, pp. 1263-1284. doi:10.1016/j.bbamcr.2006.10.001
[49] J. L. Bos, “Ras Oncogenes in Human Cancer: A Review,” Cancer Research, Vol. 49, No. 17, 1989, pp. 4682-4689.
[50] T. Alain, T. S. Kim, X. Lun, A. Liacini, L. A. Schiff, D. L. Senger, et al., “Proteolytic Disassembly Is a Critical Determinant for Reovirus Oncolysis,” Molecular Therapy, Vol. 15, No. 8, 2007, pp. 1512-1521. doi:10.1038/
[51] P. Marcato, M. Shmulevitz, D. Pan, D. Stoltz and P. W. Lee, “Ras Transformation Mediates Reovirus Oncolysis by Enhancing Virus Uncoating, Particle Infectivity and Apoptosis-Dependent Release,” Molecular Therapy, Vol. 15, No. 8, 2007, pp. 1522-1530. doi:10.1038/
[52] M. Shmulevitz, L. Z. Pan, K. Garant, D. Pan and P. W. Lee, “Oncogenic Ras Promotes Reovirus Spread by Suppressing IFN-Beta Production Through Negative Regulation of RIG-I Signaling,” Cancer Research, Vol. 70, No. 12, 2010, pp. 4912-4921. doi:10.1158/0008-5472.CAN-09-4676
[53] G. S. Feng, K. Chong, A. Kumar and B. R. Williams, “Identification of Double-Stranded RNA-Binding Domains in the Interferon-Induced Double-Stranded RNAActivated p68 Kinase,” Proceedings of the National Academy of Science of the United States of America, Vol. 89, No. 12, 1992, pp. 5447-5451. doi:10.1073/pnas.89.12.5447
[54] S. A. Vorburger, A. Pataer, S. G. Swisher and K. K. Hunt, “Genetically Targeted Cancer Therapy: Tumor Destruction by PKR Activation,” American Journal of Pharmacogenomics, Vol. 4, No. 3, 2004, pp. 189-198. doi:10.2165/00129785-200404030-00006
[55] F. Imani and B. L. Jacobs, “Inhibitory Activity for the Interferon-Induced Protein Kinase Is Associated with the Reovirus Serotype 1 Sigma 3 Protein,” Proceedings of the National Academy of Science of the United States of America, Vol. 85, No. 21, 1988, pp. 7887-7891. doi:10.1073/pnas.85.21.7887
[56] L. Song, T. Ohnuma, I. H. Gelman and J. F. Holland, “Reovirus Infection of Cancer Cells Is Not Due to Activated Ras Pathway,” Cancer Gene Therapy, Vol. 16, No. 4, 2009, p. 382. doi:10.1038/cgt.2008.84
[57] H. Cui, Y. Lin, L. Yue, X. Zhao and J. Liu, “Differential Expression of the Alpha2,3-Sialic Acid Residues in Breast Cancer is Associated with Metastatic Potential,” Oncology Reports, Vol. 25, No. 5, 2011, pp. 1365-1371.
[58] D. Lopez-Morales, J. Reyes-Leyva, G. Santos-Lopez, E. Zenteno and V. Vallejo-Ruiz, “Increased Expression of Sialic Acid in Cervical Biopsies with Squamous Intraepithelial Lesions,” Diagnostic Pathology, Vol. 5, 2010, pp. 74. doi:10.1186/1746-1596-5-74
[59] G. Raval, S. Biswas, P. Rayman, K. Biswas, G. Sa, S. Ghosh, et al., “TNF-Alpha Induction of GM2 Expression on Renal Cell Carcinomas Promotes T Cell Dysfunction,” Journal of Immunology, Vol. 178, No. 10, 2007, pp. 6642-6652.
[60] K. Twigger, V. Roulstone, J. Kyula, E. M. Karapanagiotou, K. N. Syrigos, R. Morgan, et al., “Reovirus Exerts Potent Oncolytic Effects in Head and Neck Cancer Cell Lines that Are Independent of Signalling in the EGFR Pathway,” BMC Cancer, Vol. 12, No. 1, 2012, p. 368. doi:10.1186/1471-2407-12-368
[61] L. Heinemann, G. R. Simpson, N. E. Annels, R. Vile, A. Melcher, R. Prestwich, et al., “The Effect of Cell Cycle Synchronization on Tumor Sensitivity to Reovirus Oncolysis,” Molecular Therapy, Vol. 18, No. 12, 2010, pp. 2085-2093. doi:10.1038/mt.2010.189
[62] X. M. Rao, X. Zheng, S. Waigel, W. Zacharias, K. M. McMasters and H. S. Zhou, “Gene Expression Profiles of Normal Human Lung Cells Affected by Adenoviral E1B,” Virology, Vol. 350, No. 2, 2006, pp. 418-428. doi:10.1016/j.virol.2006.02.009
[63] X. Zheng, X. M. Rao, J. G. Gomez-Gutierrez, H. Hao, K. M. McMasters and H. S. Zhou, “Adenovirus E1B55K Region is Required to Enhance Cyclin E Expression for Efficient Viral DNA Replication,” Journal of Virology, Vol. 82, No. 7, 2008, pp. 3415-3427. doi:10.1128/JVI.01708-07
[64] F. Errington, C. L. White, K. R. Twigger, A. Rose, K. Scott, L. Steele, et al., “Inflammatory Tumour Cell Killing by Oncolytic Reovirus for the Treatment of Melanoma,” Gene Therapy, Vol. 15, No. 18, 2008, pp. 1257-1270. doi:10.1038/gt.2008.58
[65] D. J. Kominsky, R. J. Bickel and K. L. Tyler, “Reovirus-Induced Apoptosis Requires Both Death Receptorand Mitochondrial-Mediated Caspase-Dependent Pathways of Cell Death,” Cell Death and Differentiation, Vol. 9, No. 9, 2002, pp. 926-933.
[66] D. J. Kominsky, R. J. Bickel and K. L. Tyler, “Reovirus-Induced Apoptosis Requires Mitochondrial Release of Smac/DIABLO and Involves Reduction of Cellular Inhibitor of Apoptosis Protein Levels,” Journal of Virology, Vol. 76, No. 22, 2002, pp. 11414-11424. doi:10.1128/JVI.76.22.11414-11424.2002
[67] J. L. Connolly, S. E. Rodgers, P. Clarke, D. W. Ballard, L. D. Kerr, K. L. Tyler, et al., “Reovirus-Induced Apoptosis Requires Activation of Transcription Factor NF-KappaB,” Journal of Virology, Vol. 74, No. 7, 2000, pp. 2981-2989. doi:10.1128/JVI.74.7.2981-2989.2000
[68] M. W. Hansberger, J. A. Campbell, P. Danthi, P. Arrate, K. N. Pennington, K. B. Marcu, et al., “IkappaB Kinase Subunits Alpha and Gamma Are Required for Activation of NF-kappaB and Induction of Apoptosis by Mammalian Reovirus,” Journal of Virology, Vol. 81, No. 3, 2007, pp. 1360-1371. doi:10.1128/JVI.01860-06
[69] J. L. Connolly and T. S. Dermody, “Virion Disassembly Is Required for Apoptosis Induced by Reovirus,” Journal of Virology, Vol. 76, No. 4, 2002, pp. 1632-1641. doi:10.1128/JVI.76.4.1632-1641.2002
[70] C. M. Coffey, A. Sheh, I. S. Kim, K. Chandran, M. L. Nibert and J. S. Parker, “Reovirus Outer Capsid Protein Micro1 Induces Apoptosis and Associates with Lipid Droplets, Endoplasmic Reticulum and Mitochondria,” Journal of Virology, Vol. 80, No. 17, 2006, pp. 8422-8438. doi:10.1128/JVI.02601-05
[71] M. L. Wisniewski, B. G. Werner, L. G. Hom, L. J. Anguish, C. M. Coffey and J. S. Parker, “Reovirus Infection or Ectopic Expression of Outer Capsid Protein Micro1 Induces Apoptosis Independently of the Cellular Proapoptotic Proteins Bax and Bak,” Journal of Virology, Vol. 85, No. 1, 2011, pp. 296-304. doi:10.1128/JVI.01982-10
[72] H. M. Berens and K. L. Tyler, “The Proapoptotic Bcl-2 Protein Bax Plays an Important Role in the Pathogenesis of Reovirus Encephalitis,” Journal of Virology, Vol. 85, No. 8, 2011, pp. 3858-3871. doi:10.1128/JVI.01958-10
[73] P. Danthi, A. J. Pruijssers, A. K. Berger, G. H. Holm, S. S. Zinkel and T. S. Dermody, “Bid Regulates the Pathogenesis of Neurotropic Reovirus,” PLoS Pathogens, Vol. 6, No. 7, 2010, Article ID: e1000980. doi:10.1371/journal.ppat.1000980
[74] D. Pan, L.-Z. Pan, R. Hill, P. Marcato, M. Shmulevitz, L. T. Vassilev and P. W. K. Lee, “Stabilisation of p53 Enhances Reovirus-Induced Apoptosis and Virus Spread through p53-Dependent NF-kappaB Activation,” British Journal of Cancer, Vol. 105, No. 7, 2011, pp. 1012-1022. doi:10.1038/bjc.2011.325
[75] G. H. Holm, J. Zurney, V. Tumilasci, S. Leveille, P. Danthi, J. Hiscott, et al., “Retinoic Acid-Inducible Gene-I and Interferon-Beta Promoter Stimulator-1 Augment Proapoptotic Responses Following Mammalian Reovirus Infection via Interferon Regulatory Factor-3,” Journal of Biological Chemistry, Vol. 282, No. 30, 2007, pp. 21953-21961. doi:10.1074/jbc.M702112200
[76] J. J. Knowlton, T. S. Dermody and G. H. Holm, “Apoptosis Induced by Mammalian Reovirus Is Beta Interferon (IFN) Independent and Enhanced by IFN Regulatory Factor 3-and NF-kappaB-Dependent Expression of Noxa,” Journal of Virology, Vol. 86, No. 3, 2012, pp. 1650-1660. doi:10.1128/JVI.05924-11
[77] K. R. Kelly, C. M. Espitia, D. Mahalingam, B. O. Oyajobi, M. Coffey, F. J. Giles, et al., “Reovirus Therapy Stimulates Endoplasmic Reticular Stress, NOXA Induction, and Augments Bortezomib-Mediated Apoptosis in Multiple Myeloma,” Oncogene, Vol. 31, No. 25, 2012, pp. 3023-3038. doi:10.1038/onc.2011.478
[78] P. Clarke, S. M. Meintzer, A. C. Spalding, G. L. Johnson and K. L. Tyler, “Caspase 8-Dependent Sensitization of Cancer Cells to TRAIL-Induced Apoptosis Following Reovirus-Infection,” Oncogene, Vol. 20, No. 47, 2001, pp. 6910-6919. doi:10.1038/sj.onc.1204842
[79] P. Clarke and K. L. Tyler, “Down-Regulation of cFLIP Following Reovirus Infection Sensitizes Human Ovarian Cancer Cells to TRAIL-Induced Apoptosis,” Apoptosis, Vol. 12, No. 1, 2007, pp. 211-223. doi:10.1007/s10495-006-0528-4
[80] I. R. Cho, S. S. Koh, H. J. Min, E. H. Park, R. Srisuttee, B. H. Jhun, et al., “Reovirus Infection Induces Apoptosis of TRAIL-Resistant Gastric Cancer Cells by Down-Regulation of Akt Activation,” International Journal of Oncology, Vol. 36, No. 4, 2010, pp. 1023-1030.
[81] P. Clarke, J. D. Beckham, J. S. Leser, C. C. Hoyt and K. L. Tyler, “Fas-Mediated Apoptotic Signaling in the Mouse Brain Following Reovirus Infection,” Journal of Virology, Vol. 83, No. 12, 2009, pp. 6161-6170. doi:10.1128/JVI.02488-08
[82] K. R. Dionne, Y. Zhuang, J. S. Leser, K. L. Tyler and P. Clarke, “Daxx Upregulation within the Cytoplasm of Reovirus-Infected Cells Is Mediated by Interferon and Contributes to Apoptosis,” Journal of Virology, Vol. 87, No. 6, 2013, pp. 3447-3460. doi:10.1128/JVI.02324-12
[83] G. J. Nuovo, M. Garofalo, N. Valeri, V. Roulstone, S. Volinia, D. E. Cohn, et al., “Reovirus-Associated Reduction of microRNA-let-7d is Related to the Increased Apoptotic Death of Cancer Cells in Clinical Samples,” Modern Pathology, Vol. 25, No. 10, 2012, pp. 1333-1344. doi:10.1038/modpathol.2012.95
[84] W. P. Tsang and T. T. Kwok, “Let-7a microRNA Suppresses Therapeutics-Induced Cancer Cell Death by Targeting Caspase-3,” Apoptosis, Vol. 13, No. 10, 2008, pp. 1215-1222. doi:10.1007/s10495-008-0256-z
[85] C. M. Thirukkumaran, Z. Q. Shi, J. Luider, K. Kopciuk, H. Gao, N. Bahlis, et al., “Reovirus as a Viable Therapeutic Option for the Treatment of Multiple Myeloma,” Clinical Cancer Research, Vol. 18, No. 18, 2012, pp. 4962-4972. doi:10.1158/1078-0432.CCR-11-3085
[86] C. M. Thirukkumaran, Z. Q. Shi, J. Luider, K. Kopciuk, H. Gao, N. Bahlis, et al., “Reovirus Modulates Autophagy during Oncolysis of Multiple Myeloma,” Autophagy, Vol. 9, No. 3, 2013, pp. 413-414. doi:10.4161/auto.22867
[87] B. Levine and D. J. Klionsky, “Development by SelfDigestion: Molecular Mechanisms and Biological Functions of Autophagy,” Developmental Cell, Vol. 6, No. 4, 2004, pp. 463-477. doi:10.1016/S1534-5807(04)00099-1
[88] J. S. Carew, K. R. Kelly and S. T. Nawrocki, “Autophagy as a Target for Cancer Therapy: New Developments,” Cancer Management and Research, Vol. 4, 2012, pp. 357-365.
[89] C. Richetta and M. Faure, “Autophagy in Antiviral Innate Immunity,” Celullar Microbiology, Vol. 15, No. 3, 2013, pp. 368-376. doi:10.1111/cmi.12043
[90] L. Qin, Z. Wang, L. Tao and Y. Wang, “ER Stress Negatively Regulates AKT/TSC/mTOR Pathway to Enhance Autophagy,” Autophagy, Vol. 6, No. 2, 2010, pp. 239-247. doi:10.4161/auto.6.2.11062
[91] C. Appenzeller-Herzog and M. N. Hall, “Bidirectional Crosstalk between Endoplasmic Reticulum Stress and mTOR Signaling,” Trends in Cell Biology, Vol. 22, No. 5, 2012, pp. 274-282. doi:10.1016/j.tcb.2012.02.006
[92] [92] S. Meng, K. Jiang, X. Zhang, M. Zhang, Z. Zhou, M. Hu, et al., “Avian Reovirus Triggers Autophagy in Primary Chicken Fibroblast Cells and Vero Cells to Promote Virus Production,” Archives of Virology, Vol. 157, No. 4, 2012, pp. 661-668.
[93] Y. Ikeda, G. Nishimura, S. Yanoma, A. Kubota, M. Furukawa and M. Tsukuda, “Reovirus Oncolysis in Human Head and Neck Squamous Carcinoma Cells,” Auris Nasus Larynx, Vol. 31, No. 4, 2004, pp. 407-412.
[94] J. Yuan and G. Kroemer, “Alternative Cell Death Mechanisms in Development and Beyond,” Genes and Development, Vol. 24, No. 23, 2010, pp. 2592-2602. doi:10.1101/gad.1984410
[95] W. Wu, P. Liu and J. Li, “Necroptosis: An Emerging form of Programmed Cell Death,” Critical Reviews in Oncology/Hematology, Vol. 82, No. 3, 2012, pp. 249-258. doi:10.1016/j.critrevonc.2011.08.004
[96] J. M. Penninger and G. Kroemer, “Mitochondria, AIF and Caspases—Rivaling for Cell Death Execution,” Nature Cell Biology, Vol. 5, No. 2, 2003, pp. 97-99. doi:10.1038/ncb0203-97
[97] W. Q. Yang, X. Lun, C. A. Palmer, M. E. Wilcox, H. Muzik, Z. Q. Shi, et al., “Efficacy and Safety Evaluation of Human Reovirus Type 3 in Immunocompetent Animals: Racine and Nonhuman Primates,” Clinical Cancer Research, Vol. 10, No. 24, 2004, pp. 8561-8576. doi:10.1158/1078-0432.CCR-04-0940
[98] K. L. Norman, M. C. Coffey, K. Hirasawa, D. J. Demetrick, S. G. Nishikawa, L. M. DiFrancesco, et al., “Reovirus Oncolysis of Human Breast Cancer,” Human Gene Therapy, Vol. 13, No. 5, 2002, pp. 641-652. doi:10.1089/10430340252837233
[99] T. Alain, J. F. Wong, R. Endersby, S. J. Urbanski, P. W. Lee, D. A. Muruve, et al., “Reovirus Decreases Azoxymethane-Induced Aberrant Crypt Foci and Colon Cancer in a Rodent Model,” Cancer Gene Therapy, Vol. 14, No. 10, 2007, pp. 867-872. doi:10.1038/sj.cgt.7701068
[100] S. Hirano, T. Etoh, R. Okunaga, K. Shibata, M. Ohta, A. Nishizono, et al., “Reovirus Inhibits the Peritoneal Dissemination of Pancreatic Cancer Cells in an Immunocompetent Animal Model,” Oncology Reports, Vol. 21, No. 6, 2009, pp. 1381-1384. doi:10.3892/or_00000364
[101] K. Hirasawa, S. G. Nishikawa, K. L. Norman, M. C. Coffey, B. G. Thompson, C. S. Yoon, et al., “Systemic Reovirus Therapy of Metastatic Cancer in Immune-Competent Mice,” Cancer Research, Vol. 63, No. 2, 2003, pp. 348-353.
[102] T. Alain, K. Hirasawa, K. J. Pon, S. G. Nishikawa, S. J. Urbanski, Y. Auer, et al., “Reovirus Therapy of Lymphoid Malignancies,” Blood, Vol. 100, No. 12, 2002, pp. 4146-4153. doi:10.1182/blood-2002-02-0503
[103] P. Hingorani, W. Zhang, J. Lin, L. Liu, C. Guha and E. A. Kolb, “Systemic Administration of Reovirus (Reolysin) Inhibits Growth of Human Sarcoma Xenografts,” Cancer, Vol. 117, No. 8, 2011, pp. 1764-1774. doi:10.1002/cncr.25741
[104] E. G. Hanel, Z. Xiao, K. K. Wong, P. W. Lee, R. A. Britten and R. B. Moore, “A Novel Intravesical Therapy for Superficial Bladder Cancer in an Orthotopic Model: Oncolytic Reovirus Therapy,” Journal of Urology, Vol. 172, No. 5, 2004, pp. 2018-2022. doi:10.1097/01.ju.0000142657.62689.f6
[105] T. A. Yap, A. Brunetto, H. Pandha, K. Harrington and J. S. Debono, “Reovirus Therapy in Cancer: Has the Orphan Virus Found a Home?” Expert Opinion on Investigational Drugs, Vol. 17, No. 12, 2008, pp. 1925-1935. doi:10.1517/13543780802533401
[106] K. Kelly, S. Nawrocki, A. Mita, M. Coffey, F. J. Giles and M. Mita, “Reovirus-Based Therapy for Cancer,” Expert Opinion on Biological Therapy, Vol. 9, No. 7, 2009, pp. 817-830. doi:10.1517/1471 2590903002039
[107] K. J. Harrington, R. G. Vile, A. Melcher, J. Chester and H. S. Pandha, “Clinical Trials with Oncolytic Reovirus: Moving beyond Phase I into Combinations with Standard Therapeutics,” Cytokine and Growth Factor Reviews, Vol. 21, No. 2-3, 2010, pp. 91-98. doi:10.1016/j.cytogfr.2010.02.006
[108] C. M. Thirukkumaran, M. J. Nodwell, K. Hirasawa, Z. Q. Shi, R. Diaz, J. Luider, et al., “Oncolytic Viral Therapy for Prostate Cancer: Efficacy of Reovirus as a Biological Therapeutic,” Cancer Research, Vol. 70, No. 6, 2010, pp. 2435-2444. doi:10.1158/0008-5472.CAN-09-2408
[109] P. Forsyth, G. Roldan, D. George, C. Wallace, C. A. Palmer, D. Morris, G. et al., “A Phase I Trial of Intratumoral Administration of Reovirus in Patients with Histologically Confirmed Recurrent Malignant Gliomas,” Molecular Therapy, Vol. 16, No. 3, 2008, pp. 627-632. doi:10.1038/
[110] L. Vidal, H. S. Pandha, T. A. Yap, C. L. White, K. Twigger, R. G. Vile, et al., “A Phase I Study of Intravenous Oncolytic Reovirus Type 3 Dearing in Patients with Advanced Cancer,” Clinical Cancer Research, Vol. 14, No. 21, 2008, pp. 7127-7137. doi:10.1158/1078-0432.CCR-08-0524
[111] R. Gollamudi, M. H. Ghalib, K. K. Desai, I. Chaudhary, B. Wong, M. Einstein, et al., “Intravenous Administration of Reolysin, a Live Replication Competent RNA Virus Is Safe in Patients with Advanced Solid Tumors,” Investigational New Drugs, Vol. 28, No. 5, 2009, pp. 641-649. doi:10.1007/s10637-009-9279-8
[112] E. M. Karapanagiotou, V. Roulstone, K. Twigger, M. Ball, M. Tanay, C. Nutting, et al., “Phase I/II Trial of Carboplatin and Paclitaxel Chemotherapy in Combination with Intravenous Oncolytic Reovirus in Patients with Advanced Malignancies,” Clinical Cancer Research, Vol. 18, No. 7, 2012, pp. 2080-2089. doi:10.1158/1078-0432.CCR-11-2181
[113] K. Twigger, L. Vidal, C. L. White, J. S. De Bono, S. Bhide, M. Coffey, et al., “Enhanced in Vitro and in Vivo Cytotoxicity of Combined Reovirus and Radiotherapy,” Clinical Cancer Research, Vol. 14, No. 3, 2008, pp. 912-923. doi:10.1158/1078-0432.CCR-07-1400
[114] J. Qiao, H. Wang, T. Kottke, C. White, K. Twigger, R. M. Diaz, et al., “Cyclophosphamide Facilitates Antitumor Efficacy against Subcutaneous Tumors Following Intravenous Delivery of Reovirus,” Clinical Cancer Research, Vol. 14, No. 1, 2008, pp. 259-269. doi:10.1158/1078-0432.CCR-07-1510
[115] H. S. Pandha, L. Heinemann, G. R. Simpson, A. Melcher, R. Prestwich, F. Errington, et al., “Synergistic Effects of Oncolytic Reovirus and Cisplatin Chemotherapy in Murine Malignant Melanoma,” Clinical Cancer Research, Vol. 15, No. 19, 2009, pp. 6158-6166. doi:10.1158/1078-0432.CCR-09-0796
[116] S. Sei, J. K. Mussio, Q. E. Yang, K. Nagashima, R. E. Parchment, M. C. Coffey, et al., “Synergistic Antitumor Activity of Oncolytic Reovirus and Chemotherapeutic Agents in Non-Small Cell Lung Cancer Cells,” Molecular Cancer, Vol. 8, 2009, p. 47. doi:10.1186/1476-4598-8-47
[117] V. Roulstone, K. Twigger, S. Zaidi, T. Pencavel, J. N. Kyula, C. White, et al., “Synergistic Cytotoxicity of Oncolytic Reovirus in Combination with Cisplatin-Paclitaxel Doublet Chemotherapy,” Gene Therapy, Vol. 20, No. 5, 2012, pp. 521-528. doi:10.1038/gt.2012.68
[118] M. C. Coffey, J. E. Strong, P. A. Forsyth and P. W. Lee, “Reovirus Therapy of Tumors with Activated Ras Pathway,” Science, Vol. 282, No. 5392, 1998, pp. 1332-1334. doi:10.1126/scien ce.282.5392.1332
[119] C. L. White, K. R. Twigger, L. Vidal, J. S. De Bono, M. Coffey, L. Heinemann, et al., “Characterization of the Adaptive and Innate Immune Response to Intravenous Oncolytic Reovirus (Dearing Type 3) during a Phase I Clinical Trial,” Gene Therapy, Vol. 15, No. 12, 2008, pp. 911-920. doi:10.1038/gt.2008.21
[120] N. Smakman, J. D. van der Bilt, D. J. van den Wollenberg, R. C. Hoeben, I. H. Borel Rinkes and O. Kranenburg, “Immunosuppression Promotes Reovirus Therapy of Colorectal Liver Metastases,” Cancer Gene Therapy, Vol. 13, No. 8, 2006, pp. 815-818. doi:10.1038/sj.cgt.7700949
[121] T. Kottke, J. Thompson, R. M. Diaz, J. Pulido, C. Willmon, M. Coffey, et al., “Improved Systemic Delivery of Oncolytic Reovirus to Established Tumors Using Preconditioning with Cyclophosphamide-Mediated Treg Modulation and Interleukin-2,” Clinical Cancer Research, Vol. 15, No. 2, 2009, pp. 561-569. doi:10.1158/1078-0432.CCR-08-1688
[122] S. A. Gujar, P. Marcato, D. Pan and P. W. Lee, “Reovirus Virotherapy Overrides Tumor Antigen Presentation Evasion and Promotes Protective Antitumor Immunity,” Molecular Cancer Therapeutics, Vol. 9, No. 11, 2010, pp. 2924-2933. doi:10.1158/1535-7163.MCT-10-0590
[123] R. J. Prestwich, E. J. Ilett, F. Errington, R. M. Diaz, L. P. Steele, T. Kottke, et al., “Immune-Mediated Antitumor Activity of Reovirus is Required for Therapy and Is Independent of Direct Viral Oncolysis and Replication,” Clinical Cancer Research, Vol. 15, No. 13, 2009, pp. 4374-4381. doi:10.1158/1078-0432.CCR-09-0334
[124] M. P. Lolkema, H. T. Arkenau, K. Harrington, P. Roxburgh, R. Morrison, V. Roulstone, et al., “A Phase I Study of the Combination of Intravenous Reovirus Type 3 Dearing and Gemcitabine in Patients with Advanced Cancer,” Clinical Cancer Research, Vol. 17, No. 3, 2011, pp. 581-588. doi:10.1158/1078-0432.CCR-10-2159
[125] S. D. Loken, K. Norman, K. Hirasawa, M. Nodwell, W. M. Lester and D. J. Demetrick, “Morbidity in Immunosuppressed (SCID/NOD) Mice Treated with Reovirus (Dearing 3) as an Anti-Cancer Biotherapeutic,” Cancer Biology and Therapy, Vol. 3, No. 8, 2004, pp. 734-738. doi:10.4161/cbt.3.8.963
[126] M. R. Roner and W. K. Joklik, “Reovirus Reverse Genetics: Incorporation of the CAT Gene into the ReoVirus Genome,” Proceedings of the National Academy of Science United States of America, Vol. 98, No. 14, 2001, pp. 8036-8041. doi:10.1073/pnas.131203198
[127] D. J. van den Wollenberg, S. K. van den Hengel, I. J. Dautzenberg, S. J. Cramer, O. Kranenburg and R. C. Hoeben, “A Strategy for Genetic Modification of the Spike-Encoding Segment of Human Reovirus T3D for Reovirus Targeting,” Gene Therapy, Vol. 15, No. 24, 2008, pp. 1567-1578. doi:10.1038/gt.2008.118
[128] T. Kobayashi, A. A. Antar, K. W. Boehme, P. Danthi, E. A. Eby, K. M. Guglielmi, et al., “A Plasmid-Based Reverse Genetics System for Animal Double-Stranded RNA Viruses,” Cell Host and Microbe, Vol. 1, No. 2, 2007, pp. 147-157. doi:10.1016/j.chom.2007.03.003
[129] V. Brochu-Lafontaine and G. Lemay, “Addition of Exogenous Polypeptides on the Mammalian Reovirus Outer Capsid Using Reverse Genetics,” Journal of Virological Methods, Vol. 179, No. 2, 2012, pp. 342-350. doi:10.1016/j.jviromet.2011.11.021
[130] K. W. Boehme, M. Ikizler, T. Kobayashi and T. S. Dermody, “Reverse Genetics for Mammalian Reovirus,” Methods, Vol. 55, No. 2, 2011, pp. 109-113. doi:10.1016/j.ymeth.2011.07.002
[131] M. Kim, K. A. Garant, N. I. zur Nieden, T. Alain, S. D. Loken, S. J. Urbanski, et al., “Attenuated Reovirus Displays Oncolysis with Reduced Host Toxicity,” British Journal of Cancer, Vol. 104, No. 2, 2010, pp. 290-299. doi:10.1038/sj.bjc.6606053
[132] M. Shmulevitz, S. A. Gujar, D. G. Ahn, A. Mohamed and P. W. Lee, “Reovirus Variants with Mutations in Genome Segments S1 and L2 Exhibit Enhanced Virion Infectivity and Superior Oncolysis,” Journal of Virology, Vol. 86, No. 13, 2012, pp. 7403-7413. doi:10.1128/JVI.00304-12
[133] M. L. Nibert and L. A. Schiff, “Reoviruses and Their Replication,” In: D. M. Knipe, Ed., Fields Virology, 4th Edition, Lippincott Williams and Wilkins, Philadephia, 2001, pp. 1679-1728.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.