Share This Article:

Single intravenous injection of CoQ10 reduces infarct size in a rat model of ischemia and reperfusion injury

DOI: 10.4236/wjcd.2013.35A001    3,557 Downloads   9,544 Views   Citations


Maintenance of mitochondrial activity and antioxidant features of coenzyme Q10 (CoQ10) could be an effective background for treatment of acute myocardial ischemia. Dietary uptake of CoQ10 is limited to only a few percent. In urgent cases, parenteral administration of CoQ10 could provide fast increase of its plasma and myocardial levels. The aim was to evaluate whether a single intravenous (i.v.) injection of solubilized CoQ10 before ischemia/reperfusion (IR) could lead to replenishment of its myocardial levels and limits subsequent myocardial IR injury. Methods: 30 min prior to coronary artery occlusion rats received i.v. solubilized CoQ10 (30 mg/kg) or saline (1 ml/kg). After 30 min of ischemia and 120 min of reperfusion, infarct zone of left ventricle (LV) and quantity of CoQ10 in LV were determined. Cardiac rhythm was monitored through the whole experiment. Results: At the beginning of reperfusion, arrhythmias were recorded in 8 (from 9) in saline and 2 (from 9) in CoQ10-treated rats. Arrhythmias in CoQ10-treated rats arose later (40 ± 8 sec) and had less duration (26 ± 14 sec); 14 ± 13 sec and 52 ± 17 sec in saline treated rats respectively. At the end of reperfusion CoQ10 treated rats revealed: 2 fold higher CoQ10 content in LV (p < 0.01), limitation of infarct zone by 35% (p < 0.01). Higher levels of CoQ10 were accompanied by less infarct size (r = ﹣0.77, p < 0.001). Conclusion: Single i.v. injection of CoQ10 effectively increased its myocardial levels and protected heart against IR injury by diminishing the size of the irreversibly damaged myocardium, decreasing frequency and duration of arrhythmias. The infarct zone inversely correlated with the quantity of CoQ10 in LV.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Ivanov, A. , Gorodetskaya, E. , Kalenikova, E. and Medvedev, O. (2013) Single intravenous injection of CoQ10 reduces infarct size in a rat model of ischemia and reperfusion injury. World Journal of Cardiovascular Diseases, 3, 1-7. doi: 10.4236/wjcd.2013.35A001.


[1] Gross, G.J. and Auchampach, J.A. (2007) Reperfusion injury: Does it exist? Journal of Molecular and Cellular Cardiology, 42, 12-18. doi:10.1016/j.yjmcc.2006.09.009
[2] Halestrap, A.P. and Pasdois, P. (2009) The role of the mitochondrial permeability transition pore in heart disease. Biochimica et Biophysica Acta, 1787, 1402-1415. doi:10.1016/j.bbabio.2008.12.017
[3] Vinten-Johansen, J., Jiang, R., Reeves, J.G., Mykytenko, J., Deneve, J. and Jobe, L.J. (2007) Inflammation, proinflammatory mediators and myocardial ischemia-reperfusion Injury. Hematology/Oncology Clinics of North America, 21, 123-145. doi:10.1016/j.hoc.2006.11.010
[4] Liehn, E.A., Postea, O., Curaj, A. and Marx, N. (2011) Repair after myocardial infarction, between fantasy and reality: The role of chemokines. Journal of the American College of Cardiology, 58, 2357-2362. doi:10.1016/j.jacc.2011.08.034
[5] Turer, A.T. and Hill, J.A. (2010) Pathogenesis of myocardial ischemia-reperfusion injury and rationale for therapy. American Journal of Cardiology, 106, 360-368. doi:10.1016/j.amjcard.2010.03.032
[6] Bentinger, M., Tekle, M. and Dallner, G. (2010) Coenzyme Q-biosynthesis and functions. Biochemical and Biophysical Research Communications, 396, 74-79. doi:10.1016/j.bbrc.2010.02.147
[7] Littarru, G.P. and Tiano, L. (2010) Clinical aspects of coenzyme Q10: An update. Nutrition, 26, 250-254. doi:10.1016/j.nut.2009.08.008
[8] Zhang, Y., Aberg, F., Appelkvist, E.L., Dallner, G. and Ernster, L. (1995) Uptake of dietary coenzyme Q supplement is limited in rats. Journal of Nutrition, 125, 446-453.
[9] Kalenikova, E.I., Gorodetskaya, E.A., Kolokolchikova, E.G., Shashurin, D.A. and Medvedev, O.S. (2007) Chronic administration of coenzyme Q10 limits postinfarct myocardial remodeling in rats. Biochemistry (Mosc), 72, 332-338. doi:10.1134/S0006297907030121
[10] (1996) National Society for Medical Research. Guide for the Care and Use of Laboratory Animals. National Academic Press, Washington DC.
[11] Walker, M.J., Curtis, M.J., Hearse, D.J., Campbell, R.W., Janse, M.J., Yellon, D.M., Cobbe, S.M., Coker, S.J., Harness, J.B., Harron, D.W., et al. (1988) The Lambeth Conventions: Guidelines for the study of arrhythmias in ischaemia infarction, and reperfusion. Cardiovasc Research, 22, 447-455. doi:10.1093/cvr/22.7.447
[12] Sohet, F.M., Neyrinck, A.M., Pachikian, B.D., de Backer, F.C., Bindels, L.B., Niklowitz, P., Menke, T., Cani, P.D. and Delzenne, N.M. (2009) Coenzyme Q10 supplementation lowers hepatic oxidative stress and inflammation associated with diet-induced obesity in mice. Biochemical Pharmacology, 78, 1391-1400. doi:10.1016/j.bcp.2009.07.008
[13] Tsuneki, H., Sekizaki, N., Suzuki, T., Kobayashi, S., Wada, T., Okamoto, T., Kimura, I. and Sasaoka, T. (2007) Coenzyme Q10 prevents high glucose-induced oxidative stress in human umbilical vein endothelial cells. European Journal of Pharmacology, 566, 1-10. doi:10.1016/j.ejphar.2007.03.006
[14] Jung, H.J., Park, E.H. and Lim, C.J. (2009) Evaluation of anti-angiogenic, anti-inflammatory and antinociceptive activity of coenzyme Q(10) in experimental animals. Journal of Pharmacy and Pharmacology, 61, 1391-1395.
[15] Armstrong, J.S., Whiteman, M., Rose, P. and Jones, D.P. (2003) The Coenzyme Q10 analog decylubiquinone inhibits the redox-activated mitochondrial permeability transition: role of mitcohondrial [correction mitochondrial] complex III. The Journal of Biological Chemistry, 278, 49079-49084. doi:10.1074/jbc.M307841200
[16] Papucci, L., Schiavone, N., Witort, E., Donnini, M., Lapucci, A., Tempestini, A., Formigli, L., Zecchi-Orlandini, S., Orlandini, G., Carella, G., Brancato, R. and Capaccioli, S. (2003) Coenzyme Q10 prevents apoptosis by inhibiting mitochondrial depolarization independently of its free radical scavenging property. The Journal of Biological Chemistry, 278, 28220-28228. doi:10.1074/jbc.M302297200
[17] Li, G., Zou, L.Y., Cao, C.M. and Yang, E.S. (2005) Coenzyme Q10 protects SHSY5Y neuronal cells from beta amyloid toxicity and oxygen-glucose deprivation by inhibiting the opening of the mitochondrial permeability transition pore. Biofactors, 25, 97-107. doi:10.1002/biof.5520250111
[18] Sahach, V.F., Vavilova, H.L., Rudyk, O.V., Dobrovol’skyi, F.V., Shymans'ka, T.V. and Miedviediev, O.S. (2007) Inhibition of mitochondrial permeability transition pore is one of the mechanisms of cardioprotective effect of coenzyme Q10. Fiziol Zh, 53, 35-42.
[19] Schmelzer, C., Lindner, I., Vock, C., Fujii, K. and Doring, F. (2007) Functional connections and pathways of coenzyme Q10-inducible genes: An in-silico study. IUBMB Life, 59, 628-633. doi:10.1080/15216540701545991
[20] Verma, D.D., Hartner, W.C., Thakkar, V., Levchenko, T.S. and Torchilin, V.P. (2007) Protective effect of coenzyme Q10-loaded liposomes on the myocardium in rabbits with an acute experimental myocardial infarction. Pharmaceutical Research, 24, 2131-2137. doi:10.1007/s11095-007-9334-0
[21] Kumar, A., Kaur, H., Devi, P. and Mohan, V. (2009) Role of coenzyme Q10 (CoQ10) in cardiac disease, hypertension and Meniere-like syndrome. Pharmacology & Therapeutics, 124, 259-268. doi:10.1016/j.pharmthera.2009.07.003
[22] Sarter, B. (2002) Coenzyme Q10 and cardiovascular disease: A review. Journal of Cardiovascular Nursing, 16, 9-20. doi:10.1097/00005082-200207000-00003
[23] Pepe, S., Marasco, S.F., Haas, S.J., Sheeran, F.L., Krum, H. and Rosenfeldt, F.L. (2007) Coenzyme Q10 in cardiovascular disease. Mitochondrion, 7S, S154-S167. doi:10.1016/j.mito.2007.02.005
[24] Molyneux, S.L., Florkowski, C.M., George, P.M., Pilbrow, A.P., Frampton, C.M., Lever, M. and Richards, A.M. (2008) Coenzyme Q10: An independent predictor of mortality in chronic heart failure. Journal of the American College of Cardiology, 52, 1435-1441. doi:10.1016/j.jacc.2008.07.044
[25] Whitman, G.J., Niibori, K., Yokoyama, H., Crestanello, J.A., Lingle, D.M. and Momeni, R. (1997) The mechanisms of coenzyme Q10 as therapy for myocardial ischemia reperfusion injury. Molecular Aspects of Medicine, 18S, S195-S203. doi:10.1016/S0098-2997(97)00017-4
[26] Niibori, K., Wroblewski, K.P., Yokoyama, H., Crestanello, J.A. and Whitman, G.J. (1999) Bioenergetic effect of liposomal coenzyme Q10 on myocardial ischemia reperfusion injury. Biofactors, 9, 307-313. doi:10.1002/biof.5520090228
[27] Crestanello, J.A., Doliba, N.M., Doliba, N.M., Babsky, A.M., Niborii, K., Osbakken, M.D. and Whitman, G.J. (2002) Effect of coenzyme Q10 supplementation on mitochondrial function after myocardial ischemia reperfusion. Journal of Surgical Research, 102, 221-228. doi:10.1006/jsre.2001.6324
[28] Makhija, N., Sendasgupta, C., Kiran, U., Lakshmy, R., Hote, M.P., Choudhary, S.K., Airan, B. and Abraham, R. (2008) The role of oral coenzyme Q10 in patients undergoing coronary artery bypass graft surgery. Journal of Cardiothoracic and Vascular Anesthesia, 22, 832-839. doi:10.1053/j.jvca.2008.03.007

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.