Share This Article:

Surface preparation and isotropic shear bond strength properties of superficial bovine dentin

Abstract Full-Text HTML Download Download as PDF (Size:1163KB) PP. 273-280
DOI: 10.4236/ojst.2013.34046    2,894 Downloads   4,200 Views   Citations

ABSTRACT

The effect of different types of surface preparation with SiC abrasive paper on the shear bond strength (SBS) of superficial bovine dentin obtained from the incisal, middle and cervical thirds were evaluated. Dentin substrates were obtained with twenty specimens for each locationgrit combination. Superficial dentin was exposed and prepared to 120-, 320-, or 600-grit SiC; the dentin surfaces were treated with Optibond Solo Plus (Kerr) and polymerized for 20 s. The specimens were placed in a jig, filled with resin composite Z100 (3M-ESPE), polymerized for 40 s according to manufacturer’s instructions, and stored for 24 h at 37℃ and 100% humidity. After 24 h, SBS was measured using a loading testing machine (Ul-tradent) and expressed in megapascals. A two-way ANOVA and Tukey test were used for data analysis. No statistically significant effect of the location (P = 0.254) or interaction grit-location (P = 0.629) were observed on SBS. Statistically significant effect of the grit on the SBS was detected (P < 0.001) with 320-grit being statistically different from 600-grit (P = 0.011) and 120-grit (P < 0.001). No significant differences were observed between 600-grit and 120-grit (P = 0.413). Regardless of the location, 320-grit consistently showed the lowest SBS indicating that different surface grit preparations have an effect on dentin SBS values.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Sabatini, C. , Andreana, S. and Wu, Z. (2013) Surface preparation and isotropic shear bond strength properties of superficial bovine dentin. Open Journal of Stomatology, 3, 273-280. doi: 10.4236/ojst.2013.34046.

References

[1] [1] De Munck, J., Van Landuyt, K., Peumans, M., Poitevin, A., Lambrechts, P., Braem, M. and Van Meerbeek, B. (2005) A critical review of the durability of adhesion to tooth tissue: Methods and results. Journal of Dental Research, 84, 118-132. doi:10.1177/154405910508400204
[2] Leloup, G., D’Hoore, W., Bouter, D., Degrange, M. and Vreven, J. (2001) Meta-analytical review of factors involved in dentin adherence. Journal of Dental Research, 80, 1605-1614. doi:10.1177/00220345010800070301
[3] Pashley, D.H. and Carvalho, R.M. (1997) Dentine permeability and dentine adhesion. Journal of Dentistry, 25, 355-372. doi:10.1016/S0300-5712(96)00057-7
[4] Pashley, D.H., Sano, H., Ciucchi, B., Yoshiyama, M. and Carvalho, R.M. (1995) Adhesion testing of dentin bonding agents: A review. Dental Materials, 11, 117-125. doi:10.1016/0109-5641(95)80046-8
[5] Rueggeberg, F.A. (1991) Substrate for adhesion testing to tooth struc-ture—Review of the literature. Dental Materi- als, 7, 2-10. doi:10.1016/0109-5641(91)90017-S
[6] Burke, F.J., Hussain, A., Nolan, L. and Fleming, G.J. (2008) Methods used in dentine bonding tests: an analysis of 102 investigations on bond strength. European Journal of Prosthodontics and Restorative Dentistry, 16, 158-165.
[7] Marshall Jr., G.W., Marshall, S.J., Kinney, J.H. and Balooch, M. (1997) The dentin substrate: Structure and properties related to bonding. Journal of Dentistry, 25, 441-458. doi:10.1016/S0300-5712(96)00065-6
[8] Tagami, J., Tao, L., Pashley, D.H. and Horner, J.A. (1989) The per-meability of dentine from bovine incisors in vitro. Archives of Oral Biology, 34, 773-777. doi:10.1016/0003-9969(89)90027-7
[9] Schilke, R., Lisson, J.A., Bauss, O. and Geurtsen, W. (2000) Com-parison of the number and diameter of dentinal tubules in human and bovine dentine by scanning electron micro-scopic investigation. Archives of Oral Biology, 45, 355-361. doi:10.1016/S0003-9969(00)00006-6
[10] Nakamichi, I., Iwaku, M. and Fusayama, T. (1983) Bovine teeth as possible substitutes in the adhesion test. Journal of Dental Research, 62, 1076-1081. doi:10.1177/00220345830620101501
[11] Reis, A.F., Giannini, M., Kavaguchi, A., Soares, C.J. and Line, S.R. (2004) Comparison of microtensile bond strength to enamel and dentin of human, bovine, and por- cine teeth. The Journal of Adhesive Dentistry, 6, 117-121.
[12] Saunders, W.P. (1988) The shear impact retentive strengths of four dentine bonding agents to hu-man and bovine dentine. Journal of Dentistry, 16, 233-238. doi:10.1016/0300-5712(88)90080-2
[13] Reeves, G.W., Fitchie, J.G., Hembree Jr., J.H. and Puckett, A.D. (1995) Microleakage of new dentin bond- ing systems using human and bovine teeth. Operative Dentistry, 20, 230-235.
[14] Schüpbach, P., Krejci, I. and Lutz, F. (1997) Dentin bonding: Effect of tubule orientation on hybridlayer formation. European Journal of Oral Sciences, 105, 344- 352. doi:10.1111/j.1600-0722.1997.tb00251.x
[15] Inoue, T., Takahashi, H. and Nishimura, F. (2002) Anisotropy of tensile strengths of bovine dentin regarding dentinal tu-bule orientation and location. Dental Materials Journal, 21, 32-43. doi:10.4012/dmj.21.32
[16] Mowery Jr., A.S., Parker, M. and Davis, E.L. (1987) Dentin bonding: The effect of surface roughness on shear bond strength. Operative Dentistry, 12, 91-94.
[17] Gupta, R. and Tewari, S. (2006) Effect of rotary instrumentation on composite bond strength with simulated pulpal pressure. Operative Dentistry, 31, 188-196. doi:10.2341/05-4
[18] Wahle, J.J. and Wendt Jr., S.L., (1993) Dentinal surface roughness: A comparison of tooth preparation techniques. Journal of Prosthetic Den-tistry, 69, 160-164. doi:10.1016/0022-3913(93)90135-B
[19] Ayad, M.F., Johnston, W.M. and Rosenstiel, S.F. (2009) Influence of dental rotary instruments on the roughness and wettability of human dentin surfaces. Journal of Pro- sthetic Dentistry, 102, 81-88. doi:10.1016/S0022-3913(09)60114-1
[20] McInnes, P.M., Wendt Jr., S.L., Retief, D.H. and Wein- berg, R. (1990) Effect of dentin surface roughness on shear bond strength. Dental Materials, 6, 204-207. doi:10.1016/0109-5641(90)90031-9
[21] Hosoya, Y., Shinkawa, H., Suefiji, C., Nozaka, K. and Garcia Godoy, F. (2004) Effects of diamond bur particle size on dentin bond strength. American Journal of Dentistry, 17, 359-364.
[22] Peerzada, F., Yiu, C.K., Hiraishi, N., Tay, F.R. and King, N.M. (2010) Effect of surface preparation on bond strength of resin luting cements to dentin. Operative Dentistry, 35, 624-633. doi:10.2341/09-379-L
[23] Tagami, J., Tao, L., Pashley, D.H., Hosoda, H. and Sano, H. (1991) Effects of high-speed cutting on dentin perme- ability and bonding. Dental Materials, 7, 234-239. doi:10.1016/S0109-5641(05)80021-1
[24] Ogata, M., Harada, N., Yamaguchi, S., Nakajima, M. and Tagami, J. (2002) Effect of self-etching primer vs phosphoric acid etchant on bonding to bur-prepared dentin. Operative Dentistry, 27, 447-454.
[25] Sabatini, C. and Andreana, S. (2013) Isotropic shear bond strength behavior of superficial bovine dentin: A pilot study. Open Journal Stomatology, 3, 1-7. doi:10.4236/ojst.2013.31001
[26] Braga, R.R., Meira, J.B., Boaro, L.C. and Xavier, T.A. (2010) Adhesion to tooth structure: A critical review of “macro” test methods. Dental Materials, 26, e38-e49. doi:10.1016/j.dental.2009.11.150
[27] Watanabe, L.G., Marshall, J.G.W. and Marshall, S.J. (1996) Dentin shear strength: Effects of tubule orientation and intratooth location, Dental Materials, 12, 109-115. doi:10.1016/S0109-5641(96)80077-7
[28] Phrukkanon, S., Burrow, M.F. and Tyas, M.J. (1999) The effect of dentine location and tubule orientation on the bond strengths between resin and dentine. Journal of Dentistry, 27, 265-274. doi:10.1016/S0300-5712(98)00060-8
[29] Kinney, J.H., Marshall, S.J. and Marshall, G.W. (2003) The mechanical properties of human dentin: A critical review and reevaluation of the dental literature. Critical Reviews in Oral Biology & Medicine, 14, 13-29. doi:10.1177/154411130301400103
[30] Eick, J.D., Johnson, L.N., Fromer, J.R., Good, R.J. and Neumann, A.W. (1972) Surface topography: Its influence on wetting and adhesion in a dental adhesive system. Journal of Dental Research, 51, 780-788. doi:10.1177/00220345720510031401
[31] Nakabayashi, N. and Takarada, K. (1992) Effect of HEMA on bonding to dentin. Dental Materials, 8, 125- 130. doi:10.1016/0109-5641(92)90067-M
[32] Al-Assaf, K., Chakmakchi, M., Palaghias, G., Karanika-Kouma, A. and Eliades, G. (2007) Interfacial characteristics of adhesive luting resins and composites with dentine. Dental Materials, 23, 829-839. doi:10.1016/j.dental.2006.06.023
[33] Loughran, G.M., Versluis, A. and Douglas, W.H. (2005) Evaluation of subcritical fatigue crack propagation in a restorative composite. Dental Materials, 21, 252-261. doi:10.1016/j.dental.2004.04.005
[34] Nakabayashi, N., Nakamura, M. and Yasuda, N. (1991) Hybrid layer as a dentin-bonding mechanism. Journal of Esthetic and Restorative Dentistry, 3, 133-138. doi:10.1111/j.1708-8240.1991.tb00985.x
[35] De Hoff, P.H. Anusavice, K.J. and Wang, Z. (1995) Three-dimensional finite element analysis of the shear bond test. Dental Materials, 11, 126-131. doi:10.1016/0109-5641(95)80047-6
[36] Pecora, N., Yaman, P., Dennison, J. and Herrero, A. (2002) Comparison of shear bond strength relative to two testing devices. Journal of Prosthetic Dentistry, 88, 511- 515. doi:10.1067/mpr.2002.129063

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.