Share This Article:

High Peak Power, Single-polarized, Sub-nanoseconds Pulses Generation of a Yb-doped Rod-type Photonic Crystal Fiber Amplifier

Abstract Full-Text HTML Download Download as PDF (Size:179KB) PP. 69-72
DOI: 10.4236/opj.2013.32B017    3,751 Downloads   5,121 Views   Citations


We report a high-peak-power, single-polarized master oscillator power amplification system employing polarization- maintaining Yb-doped rod-type photonic crystal fiber. The MOPA system comprises of a Q-switched microchip laser generating ~630ps pulses at 8.6 kHz repetition-rate and two amplification stages employing double cladding fiber and rod-type PCF respectively. The MOPA system obtains narrow spectral bandwidth, single-polarized pulses of 9W maximum output average power, corresponding to peak power of 1.7MW.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Z. Wang, S. Du, Z. Wang, J. He, Y. Wei, Q. Lou and J. Zhou, "High Peak Power, Single-polarized, Sub-nanoseconds Pulses Generation of a Yb-doped Rod-type Photonic Crystal Fiber Amplifier," Optics and Photonics Journal, Vol. 3 No. 2B, 2013, pp. 69-72. doi: 10.4236/opj.2013.32B017.


[1] J. Saby, B. Cocquelin, A. Meunier, S. Pierrot, P.-J. Devilder, P. Deslandes and F. Salin, “High Average and High Peak Power Pulsed Fiber Lasers at 1030 nm, 515nm and 343 nm,” Proceedings of SPIE, Vol. 7580.
[2] O. Schmidt, J. Rothhardt, F. Röser, S. Linke, T. Schreiber, K. Radem aker, J. Limpert, S. Ermeneux, P. Yvernault, F. Salin and A. Tünnermann, “Millijoule Pulse Energy Q-Switched Short-Length Fiber Laser,” Optics Letters, Vol.32, 2007, pp. 1551-1553.
[3] J. Dong, A. Shirakawa1, S. Huang, Y. Feng1, K. Takaichi, M. Musha, Ken-Ichi Ueda and A. A. Kaminskii, “Stable Laser-Diode Pumped Microchip Sub-Nanosecond Cr, Yb: YAG self-Q-switched laser,” Laser Physics Letters, Russia, Vol. 2, 2005,pp. 387–391. doi:10.1002/lapl.200510018
[4] F. D. Teodoro and C. D. Brooks, “Multistage Yb-Doped Fiber Amplifier Generating Megawatt Peak-Power, Subnanosecond Pulses,” Optics Letters, Vol. 30, 2005, pp. 3299-3301.
[5] S.-U. Alam, K.K. Chen, J. R. Hayes, D. J. Lin, A. Malinowsky, H.J. Baker, N. Trela, R. McBride and D. J. Richardson, “Over 55W of Frequency Doubled Light at 530 nm Pumped by an All-Fiber, Diffraction Limited, Picosecond Fibre MOPA,” Proceedings of SPIE, Vol. 7580.
[6] J. Limpert, F. Röser, D. N. Schimpf, E. Seise, T. Eidam, S. Hädrich, J. Rothhardt, C. J. Misas and A. Tünner-mann, “High Repetition Rate Gigawatt Peak Power Fiber Laser Systems: Challenges, Design, and Experiment,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 15, 2009, pp.159-169. doi:10.1109/JSTQE.2008.2010244
[7] O. Schmidt, D. Nodop, J. Limpert, A. Tünnermann, “105 kHz, 85 ps, 3 MW Peak Power Microchip Laser Fiber Amplifier System,” OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper WB23.
[8] F. D. Teodoro and C. D. Brooks, “Fiber Lasers: Fiber Sources Reach Multimegawatt Peak Power in NS Pulses”, Laser Focus World, 2006, pp. 94-98.
[9] D. Taverner, D. J. Richardson, L. Dong and J. E. Caplen, “158-mJ Pulses from A Single-Transverse-Mode, Large- Mode-Area Erbium-doped fiber amplifier,” Optics Letters, Vol.22, 1997, pp. 378-380.
[10] G. P. Agrawal, Nonlinear Fiber Optics, 4th. Edition. Oxford: Elsevier, 2007.

comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.