Description of the FDML Laser with Quasi-steady State Model of the SOA

Abstract

Experiments and simulations demonstrate that an SOA-based ring cavity can operate as a tunable laser, wavelength- swept laser or Fourier-domain-mode-locking laser according to the relation between the roundtrip frequency and the sweeping frequency of the filter.

Share and Cite:

Z. Wang, L. Zhang, L. Liu, Z. Sun, Y. Liu and F. Wang, "Description of the FDML Laser with Quasi-steady State Model of the SOA," Optics and Photonics Journal, Vol. 3 No. 2B, 2013, pp. 61-65. doi: 10.4236/opj.2013.32B015.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R. Huber, M. Wojtkowski and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A New Laser Operating Regime and Applications for Optical Coherence Tomography,” Optics Express, Vol. 14, 2006, pp. 3225-3237. doi:10.1364/OE.14.003225
[2] R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto and K. Hsu, “Amplified, Frequency Swept Lasers for Frequency Domain Reflectometry and OCT Imaging: Design and Scaling Principles,” Optics Express, Vol. 13, 2005, pp. 3513-3528. doi:10.1364/OPEX.13.003513
[3] S. W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, “Swept Source Optical Coherence Microscopy Using A Fourier Domain Mode Locking Laser,” Optics Express, Vol. 15, 2007, pp. 6210-6217. doi:10.1364/OE.15.006210
[4] R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-Dimensional and C-Mode OCT Imaging with a Compact, Frequency Swept Laser Source at 1300 nm,” Optics Express, Vol. 13, 2005, pp. 10523-10538. doi:10.1364/OPEX.13.010523
[5] R. Huber, D. C. Adler and J. G. Fujimoto, “Buffered Fourier Domain Mode Locking: Unidirectional Swept Laser Sources for Optical Coherence Tomography Imaging at 370,000 lines/s,” Optics Letters, Vol. 31, 2006, pp. 2975-2977. doi:10.1364/OL.31.002975
[6] M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk and J. Duker, “Ultrahigh-Resolution, High-Speed, Fourier Domain Optical Coherence Tomography and Methods for Dispersion Compensation,” Optics Express, Vol. 12, 2004, pp. 2404-2422. doi:10.1364/OPEX.12.002404
[7] W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig and R. Huber, “Multimegahertz OCT: High Quality 3D Imaging at 20 Million A-Scans and 4.5 GVoxels Per Second,” Optics Express, Vol. 18, 2010, pp. 14685-14704. doi:10.1364/OE.18.014685
[8] T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann and R. Huber, “Megahertz OCT for Ultrawide-Field Retinal Imaging with A 1050 nm Fourier Domain Mode-Locked Laser,” Optics Express, Vol. 19, 2011, pp. 3044-3062. doi:10.1364/OE.19.003044
[9] C. Jirauschek, B. Biedermann and R. Huber, “A Theoretical Description of Fourier Domain Mode Locked Lasers,” Optics Express, Vol. 17, 2009, pp. 24013-24019. doi:10.1364/OE.17.024013
[10] S. Todor, B. Biedermann, R. Huber and C. Jirauschek, “Balance of Physical Effects Causing Stationary Operation of Fourier Domain Mode-Locked Lasers,” Journal. Of Optical Society of America B, Vol. 29, 2012, pp. 656-664. doi:10.1364/JOSAB.29.000656
[11] M. J. Connelly, “Wideband Semiconductor Optical Amplifier Steady-State Numerical Model,” IEEE Journal of Quantum Electronics, Vol. 37, 2001, pp. 439-447. doi:10.1109/3.910455

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.