Share This Article:

Description of the FDML Laser with Quasi-steady State Model of the SOA

Abstract Full-Text HTML Download Download as PDF (Size:528KB) PP. 61-65
DOI: 10.4236/opj.2013.32B015    2,084 Downloads   2,994 Views  

ABSTRACT

Experiments and simulations demonstrate that an SOA-based ring cavity can operate as a tunable laser, wavelength- swept laser or Fourier-domain-mode-locking laser according to the relation between the roundtrip frequency and the sweeping frequency of the filter.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Z. Wang, L. Zhang, L. Liu, Z. Sun, Y. Liu and F. Wang, "Description of the FDML Laser with Quasi-steady State Model of the SOA," Optics and Photonics Journal, Vol. 3 No. 2B, 2013, pp. 61-65. doi: 10.4236/opj.2013.32B015.

References

[1] R. Huber, M. Wojtkowski and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A New Laser Operating Regime and Applications for Optical Coherence Tomography,” Optics Express, Vol. 14, 2006, pp. 3225-3237. doi:10.1364/OE.14.003225
[2] R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto and K. Hsu, “Amplified, Frequency Swept Lasers for Frequency Domain Reflectometry and OCT Imaging: Design and Scaling Principles,” Optics Express, Vol. 13, 2005, pp. 3513-3528. doi:10.1364/OPEX.13.003513
[3] S. W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, “Swept Source Optical Coherence Microscopy Using A Fourier Domain Mode Locking Laser,” Optics Express, Vol. 15, 2007, pp. 6210-6217. doi:10.1364/OE.15.006210
[4] R. Huber, M. Wojtkowski, J. G. Fujimoto, J. Y. Jiang, and A. E. Cable, “Three-Dimensional and C-Mode OCT Imaging with a Compact, Frequency Swept Laser Source at 1300 nm,” Optics Express, Vol. 13, 2005, pp. 10523-10538. doi:10.1364/OPEX.13.010523
[5] R. Huber, D. C. Adler and J. G. Fujimoto, “Buffered Fourier Domain Mode Locking: Unidirectional Swept Laser Sources for Optical Coherence Tomography Imaging at 370,000 lines/s,” Optics Letters, Vol. 31, 2006, pp. 2975-2977. doi:10.1364/OL.31.002975
[6] M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk and J. Duker, “Ultrahigh-Resolution, High-Speed, Fourier Domain Optical Coherence Tomography and Methods for Dispersion Compensation,” Optics Express, Vol. 12, 2004, pp. 2404-2422. doi:10.1364/OPEX.12.002404
[7] W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig and R. Huber, “Multimegahertz OCT: High Quality 3D Imaging at 20 Million A-Scans and 4.5 GVoxels Per Second,” Optics Express, Vol. 18, 2010, pp. 14685-14704. doi:10.1364/OE.18.014685
[8] T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann and R. Huber, “Megahertz OCT for Ultrawide-Field Retinal Imaging with A 1050 nm Fourier Domain Mode-Locked Laser,” Optics Express, Vol. 19, 2011, pp. 3044-3062. doi:10.1364/OE.19.003044
[9] C. Jirauschek, B. Biedermann and R. Huber, “A Theoretical Description of Fourier Domain Mode Locked Lasers,” Optics Express, Vol. 17, 2009, pp. 24013-24019. doi:10.1364/OE.17.024013
[10] S. Todor, B. Biedermann, R. Huber and C. Jirauschek, “Balance of Physical Effects Causing Stationary Operation of Fourier Domain Mode-Locked Lasers,” Journal. Of Optical Society of America B, Vol. 29, 2012, pp. 656-664. doi:10.1364/JOSAB.29.000656
[11] M. J. Connelly, “Wideband Semiconductor Optical Amplifier Steady-State Numerical Model,” IEEE Journal of Quantum Electronics, Vol. 37, 2001, pp. 439-447. doi:10.1109/3.910455

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.