Share This Article:

Functional Aspects of Silencing and Transient Expression of psbS in Nicotiana benthamiana

Abstract Full-Text HTML Download Download as PDF (Size:914KB) PP. 1521-1532
DOI: 10.4236/ajps.2013.47184    3,764 Downloads   4,901 Views   Citations

ABSTRACT

MicroRNA-based gene silencing is a functional genomics tool for a wide range of eukaryotes. As a basis for broader application of virus-induced gene silencing (VIGS) to photosynthesis research, we employed a tobacco rattle virus (TRV) vector to silence expression of the nuclear psbS gene in Nicotiana benthamiana. The 22-kiloDalton psbS protein is essential for xanthophyll- and H+-dependent thermal dissipation of excitation in higher plants widely known as nonphotochemical quenching (NPQ). Controls treated with the TRV-VIGS vector containing a bacterial chloramphenicol resistance gene as the silencing target were included to test for non-silencing effects of the viral vector system. PsbS protein was undetectable and both psbS mRNA transcript levels and NPQ capacity were dramatically reduced in new leaf tissue of VIGS-psbS plants only. Photosynthetic performance in TRV-VIGS-treated and uninfiltrated plants was assessed by application of CO2 exchange, chlorophyll fluorescence, and in vivo absorbance changes at 810 nm. TRV-VIGS caused a mild stress based on pigment content and light absorption characteristics in some cases. To assess transient complementation of NPQ, the endogenous psbS gene was silenced using only the transit sequence in the TRV vector followed by Agrobacterium-mediated transient expression of a modified gene consisting of an altered transit sequence fused to the native mature protein sequence. Nevertheless, NPQ in infused fully expanded leaves that expressed this re-introduced form was not fully restored indicating the possible importance of psbS incorporation prior to formation of grana stacks.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

R. Peterson, H. Eichelmann, V. Oja, A. Laisk, E. Talts and N. Schultes, "Functional Aspects of Silencing and Transient Expression of psbS in Nicotiana benthamiana," American Journal of Plant Sciences, Vol. 4 No. 7, 2013, pp. 1521-1532. doi: 10.4236/ajps.2013.47184.

References

[1] D. C. Baulcombe, “RNA Silencing in Plants,” Nature, Vol. 431, No. 7006, 2004, pp. 356-363. doi:10.1038/nature02874
[2] T. M. Burch-Smith, J. C. Anderson, G. B. Martin and S. P. Dinesh-Kumar, “Applications and Advantages of VirusInduced Gene Silencing for Gene Function Studies in Plants,” The Plant Journal, Vol. 39, No. 5, 2004, pp. 734-746. doi:10.1111/j.1365-313X.2004.02158.x
[3] A. R. van der Krol, L. A. Mur, M. Beld, J. N. M. Mol and A. R. Stuitje, “Flavonoid Genes in Petunia: Addition of a Limited Number of Gene Copies May Lead to a Suppression of Gene Expression,” Plant Cell, Vol. 2, No. 4, 1990, pp. 219-299.
[4] C. Napoli, C. Lemieux and R. Jorgensen, “Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans,” Plant Cell, Vol. 2, No. 4, 1990, pp. 279-289.
[5] M. H. Kumagai, J. Donson, G. Della-Cioppa, D. Harvey, K. Hanley and L. K. Grill, “Cytoplasmic Inhibition of Carotenoid Biosynthesis with Virus-Derived RNA,” Proceedings of the National Academy of Sciences, Vol. 92, No. 5, 1995, pp. 1679-1683. doi:10.1073/pnas.92.5.1679
[6] D. C. Baulcombe, “Fast Forward Genetics Based on Virus-Induced Gene Silencing,” Current Opinion in Plant Biology, Vol. 2, No. 2, 1999, pp. 109-113. doi:10.1016/S1369-5266(99)80022-3
[7] T. M. Burch-Smith, M. Schiff, Y. Liu and S. P. DineshKumar, “Efficient Virus-Induced Gene Silencing in Arabidopsis,” Plant Physiology, Vol. 142, No. 1, 2006, pp. 21-27. doi:10.1104/pp.106.084624
[8] X.-P. Li, O. Bjorkman, C. Shih, A. R. Grossman, M. Rosenquist, S. Jansson and K. K. Niyogi, “A Pigment-Binding Protein Essential for Regulation of Photosynthetic Light Harvesting,” Nature, Vol. 403, No. 6768, 2000, pp. 391-395. doi:10.1038/35000131
[9] X.-P. Li, A. Phippard, J. Pasari and K. K. Niyogi, “Structure-Function Analysis of Photosystem II Subunit S (PsbS) in Vivo,” Functional Plant Biology, Vol. 29, No. 10, 2002, pp. 1131-1139. doi:10.1071/FP02065
[10] R. B. Peterson and E. A. Havir, “Photosynthetic Properties of an Arabidopsis thaliana Mutant Possessing a Defective psbS Gene,” Planta, Vol. 214, No. 1, 2001, pp. 142-152. doi:10.1007/s004250100601
[11] R. B. Peterson and E. A. Havir, “The Multiphasic Nature of Nonphotochemical Quenching: Implications for Assessment of Photosynthetic Electron Transport Based on Chlorophyll Fluorescence,” Photosynthesis Research, Vol. 82, No. 1, 2004, pp. 95-107. doi:10.1023/B:PRES.0000040477.43858.54
[12] R. B. Peterson, “PsbS Genotype in Relation to Coordinated Function of PS II and PS I in Arabidopsis Leaves,” Photosynthesis Research, Vol. 85, No. 2, 2005, pp. 205-219. doi:10.1007/s11120-005-3106-7
[13] Y. Liu, M. Schiff and S. P. Dinesh-Kumar, “Virus-Induced Gene Silencing in Tomato,” The Plant Journal, Vol. 31, No. 6, 2002, pp. 777-786. doi:10.1046/j.1365-313X.2002.01394.x
[14] Y. Liu, M. Schiff, R. Marathe and S. P. Dinesh-Kumar, “Tobacco Rar1, EDS1 and NPR1/NIM1 Like Genes Are Required for N-Mediated Resistance to Tobacco Mosaic Virus,” The Plant Journal, Vol. 30, No. 4, 2002, pp. 415-429. doi:10.1046/j.1365-313X.2002.01297.x
[15] F. Ratcliff, A. M. Martin-Hernandez and D. C. Baulcombe, “Tobacco Rattle Virus as a Vector for Analysis of Gene Function by Silencing,” The Plant Journal, Vol. 25, No. 2, 2001, pp. 237-245. doi:10.1046/j.0960-7412.2000.00942.x
[16] S. P. Dinesh-Kumar, R. Anandalakshmi, R. Marathe, M. Schiff and Y. Liu, “Virus-Induced Gene Silencing,” Plant Functional Genomics, Vol. 236, 2003, pp. 287-294.
[17] A. Laisk, V. Oja, B. Rasulov, H. Ramma, H. Eichelmann, I. Kasparova, H. Pettai, E. Padu and E. Vapaavuori, “A Computer-Operated Routine of Gas Exchange and Optical Measurements to Diagnose Photosynthetic Apparatus in Leaves,” Plant, Cell & Environment, Vol. 25, No. 7, 2002, pp. 923-943. doi:10.1046/j.1365-3040.2002.00873.x
[18] W. Yamori, K. Noguchi and I. Terashima, “Temperature Acclimation of Photosynthesis in Spinach Leaves: Analyses of Photosynthetic Components and Temperature Dependencies of Photosynthetic Partial Reactions,” Plant, Cell & Environment, Vol. 28, No. 4, 2005, pp. 536-547. doi:10.1111/j.1365-3040.2004.01299.x
[19] A. Laisk and F. Loreto, “Determining Photosynthetic Parameters from Leaf CO2 Exchange and Chlorophyll Fluorescence: Rubisco Specificity Factor, Dark Respiration in the Light, Excitation Distribution Between Photosystems, Alternative Electron Transport and Mesophyll Diffusion Resistance,” Plant Physiology, Vol. 110, No. 3, 1996, pp. 903-912.
[20] V. Oja and A. Laisk, “Oxygen Yield from Single Turnover Flashes in Leaves: Non-Photochemical Excitation Quenching and the Number of Active PSII,” Biochimica et Biophysica Acta, Vol. 1460, No. 2-3, 2000, pp. 291-301. doi:10.1016/S0005-2728(00)00155-9
[21] R. B. Peterson, V. Oja and A. Laisk, “Chlorophyll Fluorescence at 680 and 730 nm and Leaf Photosynthesis,” Photosynthesis Research, Vol. 70, No. 2, 2001, pp. 185-196. doi:10.1023/A:1017952500015
[22] B. Genty, J. M. Briantais and N. R. Baker, “The Relationship between Quantum Yield of Photosynthetic Electron Transport and Quenching of Chlorophyll Fluorescence,” Biochimica et Biophysica Acta, Vol. 990, No. 1, 1989, pp. 87-92. doi:10.1016/S0304-4165(89)80016-9
[23] A. Laisk, V. Oja, B. Rasulov, H. Eichelmann and A. Sumberg, “Quantum Yields and Rate Constants of Photochemical and Nonphotochemical Excitation Quenching. Experiment and Model,” Plant Physiology, Vol. 115, No. 2, 1997, pp. 803-815.
[24] E. Talts, V. Oja, H. Ramma, B. Rasulov, A. Anijalg, A. Laisk, “Dark Inactivation of Ferredoxin-NADP Reductase and Cyclic Electron Flow under Far-Red Light in Sunflower Leaves,” Photosynthesis Research, Vol. 94, No. 1, 2007, pp. 109-120. doi:10.1007/s11120-007-9224-7
[25] J. Harbinson, B. Genty, N. R. Baker, “Relationship between the Quantum Efficiencies of Photosystems I and II in Pea Leaves,” Plant Physiology, Vol. 90, No. 3, 1989, pp. 1029-1034. doi:10.1104/pp.90.3.1029
[26] H. Eichelmann and A. Laisk, “Cooperation of Photosystems II and I in Leaves as Analyzed by Simultaneous Measurements of Chlorophyll Fluorescence and Transmittance at 800 nm,” Plant & Cell Physiology, Vol. 41, No. 2, 2000, pp. 138-147. doi:10.1093/pcp/41.2.138
[27] J. Harbinson and F. I. Woodward, “The Use of LightInduced Absorbance Changes at 820 nm to Monitor the Oxidation State of P-700 in Leaves,” Plant, Cell & Environment, Vol. 10, No. 2, 1987, pp. 131-140.
[28] A. Laisk, H. Eichelmann, V. Oja and R. B. Peterson, “Control of Cytochrome b6f at Low and High Light Intensity and Cyclic Electron Transport in Leaves,” Biochimica et Biophysica Acta, Vol. 1708, No. 1, 2005, pp. 79-90. doi:10.1016/j.bbabio.2005.01.007
[29] A. Laisk, H. Eichelmann, V. Oja, E. Talts and R. Scheibe, “Rates and Roles of Cyclic and Alternative Electron Flow in Potato Leaves,” Plant & Cell Physiology, Vol. 48, No. 11, 2007, pp. 1575-1588. doi:10.1093/pcp/pcm129
[30] J. Harbinson, B. Genty and N. R. Baker, “The Relationship between CO2 Assimilation and Electron Transport in Leaves,” Photosynthesis Research, Vol. 25, No. 3, 1990, pp. 213-224. doi:10.1007/BF00033162
[31] A. Laisk and V. Oja, “Range of Photosynthetic Control of Postillumination P700+ Reduction Rate in Sunflower Leaves,” Photosynthesis Research, Vol. 39, No. 1, 1994, pp. 39-50. doi:10.1007/BF00027141
[32] B. B. H. Wulff, C. M. Thomas, M. Smoker, M. Grant and J. D. G. Jones, “Domain Swapping and Gene Shuffling Identify Sequences Required for Induction of an AvrDependent Hypersensitive Response by the Tomato Cf-4 and Cf-9 Proteins,” Plant Cell, Vol. 13, No. 2, 2001, pp. 255-272.
[33] S. M. Gómez, K. Y. Bil’, R. Aguilera, J. N. Nishio, K. F. Faull, J. P. Whitelegge, “Transit Peptide Cleavage Sites of Integral Thylakoid Membrane Proteins,” Molecular & Cellular Proteomics, Vol. 2, 2003, pp. 1068-1085. doi:10.1074/mcp.M300062-MCP200
[34] I. Hein, M. Barciszewska-Pacak, K. Hrudikova, S. Williamson, M. Dinesen, I. E. Soenderby, S. Sundar, A. Jarmolowski, K. Shirasu and C. Lacomme, “Virus-Induced Gene Silencing-Based Functional Characterization of Genes Associated with Powdery Mildew Resistance in Barley,” Plant Physiology, Vol. 138, No. 4, 2005, pp. 2155-2164. doi:10.1104/pp.105.062810
[35] M. Senthil-Kumar, G. Govind, K. Li, K. S. Mysore and M. Udayakumar “Functional Characterization of Nicotiana benthamiana Homologs of Peanut Water Deficit-Induced Genes by Virus-Induced Gene Silencing,” Planta, Vol. 225, No. 3, 2007, pp. 523-539. doi:10.1007/s00425-006-0367-0
[36] J.-C. Chen, C.-Z. Jiang, T. E. Gookin, D. A. Hunter, D. G. Clark and M. S. Reid, “Chalcone Synthase as a Reporter in Virus-Induced Gene Silencing Studies of Flower Senescence,” Plant Molecular Biology, Vol. 55, No. 4, 2004, pp. 521-530. doi:10.1007/s11103-004-0590-7
[37] T. Luo, S. Luo, W. L. Araújo, H. Schlicke, M. Rothbart, J. Yu, T. Fan, A. R. Fernie, B. Grimm and M. Luo, “Virus-Induced Gene Silencing of Pea CHLI and CHLD Affects Tetrapyrrole Biosynthesis, Chloroplast Development and the Primary Metabolic Network,” Plant Physiology and Biochemistry, Vol. 65, 2013, pp. 17-26. doi:10.1016/j.plaphy.2013.01.006
[38] X.-P. Li, P. Müller-Moulé, A. M. Gilmore and K. K. Niyogi, “PsbS-Dependent Enhancement of Feedback DeExcitation Protects Photosystem II from Photoinhibition,” Proceedings of the National Academy of Sciences, Vol. 99, No. 23, 2002, pp. 15222-15227. doi:10.1073/pnas.232447699
[39] R. B. Peterson and E. A. Havir, “Contrasting Modes of Regulation of PSII Light Utilization with Changing Irradiance in Normal and PsbS Mutant Leaves of Arabidopsis thaliana,” Photosynthesis Research, Vol. 75, No. 1, 2003, pp. 57-70. doi:10.1023/A:1022458719949
[40] A. Z. Kiss, A. V. Ruban and P. Horton, “The PsbS Protein Controls the Organization of the Photosystem II Antenna in Higher Plant Thylakoid Membranes,” The Journal of Biological Chemistry, Vol. 283, 2008, pp. 3972-3978. doi:10.1074/jbc.M707410200
[41] T. Pfannschmidt, J. F. Allen and R. Oelmüller, “Principles of Redox Control in Photosynthesis Gene Expression,” Physiologia Plantarum, Vol. 112, No. 1, 2001, pp. 1-9. doi:10.1034/j.1399-3054.2001.1120101.x
[42] A. Bendahmane, G. Farnham, P. Moffett and D. C. Baulcombe, “Constitutive Gain-of-Function Mutants in a Nucleotide Binding Site-Leucine Rich Repeat Protein Encoded at the Rx Locus of Potato,” The Plant Journal, Vol. 32, No. 2, 2002, pp. 195-204. doi:10.1046/j.1365-313X.2002.01413.x
[43] A. J. Bernal, Q. Pan, J. Pollack, L. Rose, A. Kozik, N. Willits, Y. Luo, M. Guittet, E. Kochetkova and R. W. Michelmore, “Functional Analysis of the Plant Disease Resistance Gene Pto Using DNA Shuffling,” The Journal of Biological Chemistry, Vol. 280, 2005, pp. 23073-23083. doi:10.1074/jbc.M500992200
[44] N. P. Schultes and R. B. Peterson, “Phylogeny-Directed Structural Analysis of the Arabidopsis PsbS Protein,” Biochemical and Biophysical Research Communications, Vol. 355, No. 1426, 2007, pp. 464-470. doi:10.1016/j.bbrc.2007.01.173
[45] T. Wroblewski, A. Tomczak and R. Michelmore, “Optimization of Agrobacterium-Mediated Transient Assays of Gene Expression in Lettuce, Tomato, and Arabidopsis,” Plant Biotechnology Journal, Vol. 3, No. 2, 2005, pp. 259-273. doi:10.1111/j.1467-7652.2005.00123.x
[46] E. Baena-González and E.-M. Aro, “Biogenesis, Assembly and Turnover of Photosystem II Units,” Philosophical Transactions of the Royal Society B, Vol. 357, No. 1426, 2002, pp. 1451-1460. doi:10.1098/rstb.2002.1141
[47] S. M. Gómez, J. N. Nishio, K. F. Faull and J. P. Whitelegge, “The Chloroplast Grana Proteome Defined by Intact Mass Measurements from Liquid Chromatography Mass Spectrometry,” Molecular & Cellular Proteomics, Vol. 1, 2002, pp. 46-59. doi:10.1074/mcp.M100007-MCP200.

  
comments powered by Disqus

Copyright © 2018 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.