Conclusive Growth of CdTe Nanorods by Solvothermal Decomposition Using Single Source Precursors

Abstract

CdTe nanorods are synthesized by solvothermal decomposition, using single source molecular precursors (SSMP) cadmium (II), complex of bis-(aminopropyl telluride) (SSMP-I) and cadmium (II) bis-(isopropyl telluro) propane (SSMP-II) and quinoline as solvent at relatively low temperature (210°C). As synthesized nanomaterials are structurally characterized by XRD and SEM, SEM micrographs revealed formation of rod shapes structures whose dimensions change with the source precursor molecule. The average crystallite size estimated from XRD data is 29.78 and 28.94 nm respectively using Precursors I and II. The average size of nanorods is 1.237 μm and 0.15μm respectively, estimated from SEM micrographs. These are much larger than the average crystallite size estimated from XRD data. This is attributed to the agglomeration of nanocrystallites as quinoline is not a good capping agent.

Share and Cite:

A. Tiwari, V. Verma, T. Jain and P. Bajpai, "Conclusive Growth of CdTe Nanorods by Solvothermal Decomposition Using Single Source Precursors," Soft Nanoscience Letters, Vol. 3 No. 3, 2013, pp. 52-57. doi: 10.4236/snl.2013.33010.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] W. Wang, C. Chen, K.-H. Lin, Y. Fang and C. M. Lieber, Nanosensors. US 2007/0264623 A1, 2007.
[2] X. Wang and Y. D. Li, “Selected-Control Hydrothermal Synthesis of α- and β-MnO2 Single Crystal Nanowires,” Journal of The American Chemical Society, Vol. 124, No. 12, 2002, pp. 2880-2881. doi:10.1021/ja0177105
[3] H. Dai, E. W. Wong, Y. Z. Lu, S. Fan and C. M. Lieber, “Synthesis and Characterization of Carbide Nanorods,” Nature, Vol. 375, No. 6534, 1995, pp. 769-772. doi:10.1038/375769a0
[4] X. F. Duan, Y. Huang, Y. Cui, J. F. Wang and C. M. Lieber, “Indium Phosphide Nanowires as Building Blocks for Nanoscale Electronic and Optoelectronic Devices,” Nature, Vol. 409, No. 6816, 2001, pp. 66-69.
[5] J. D. Holmes, K. P. Johnston, R. C. Doty and B. A. Korgel, “Control of Thickness and Orientation of Solution-Grown Silicon Nanowires,” Science, Vol. 287, No. 5457, 2000, pp. 1471-1473.
[6] B. Gates, Y. Wu, Y. Yin, P. Yang and Y. Xia, “Single-Crystalline Nanowires of Ag2Se Can Be Synthesized by Templating against Nanowires of Trigonal Se,” Journal of the American Chemical Society, Vol. 123, No. 46, 2001, pp. 11500-11501. doi:10.1021/ja0166895
[7] C. R. Martin, “Nanomaterials: A Membrane-Based Synthetic Approach,” Science, Vol. 266, No. 5193, 1994, pp. 1961-1966. doi:10.1126/science.266.5193.1961
[8] X. G. Peng, L. Manna, W. D. Yang, J. Wickham, E. Scher, A. Kadavanich and A. P. Alivisatos, “Shape Control of CdSe Nanocrystal,” Nature, Vol. 404, No. 6773, 2000, pp.59-61.
[9] S. R. Nicewarner-Pena, et al., “Submicrometer Metallic Barcodes,” Science, Vol. 294, No. 5540, 2001, pp. 137-141. doi:10.1126/science.294.5540.137
[10] J. S. Yu, et al., “Template Synthesis of Polymer-Insulated Colloidal Gold Nanowires with Reactive Ends,” Chemical Communications, No. 24, 2000, pp. 2445-2446. doi:10.1039/b007999p
[11] A. P. Alivisatos, “Semiconductor Clusters, Nanocrystals, and Quantum Dots,” Science, Vol. 271, No. 5251, 1996, pp. 933-937.
[12] M. L. Striegerwald and L. E. Brus, “Synthesis, Stabilization, and Electronic Structure of Quantum Semiconductor Nanoclusters,” Annual Review of Materials Science, Vol. 19,1989, pp. 471-495. doi:10.1146/annurev.ms.19.080189.002351
[13] M. D. Milton, S. Khan, J. D. Singh, V. Mishra and B. L. Khandelwal, “A Facile Access to Chalcogen and Dichalcogen Bearing Dialkylamines and Diols,” Tetrahedron Letters, Vol. 46, No. 5, 2005, pp. 755-758. doi:10.1016/j.tetlet.2004.12.035
[14] Y. J. Wu, H. Q. Yan and P. D. Yang, “Semiconductor Nanowire Array: Potential Substrates for Photocatalysis and Photovoltaics,” Topics in Catalysis, Vol. 19, No. 2, 2002, pp. 197-202. doi:10.1023/A:1015260008046
[15] B. R. Mehta andF. E. Kruis, “A Graded Diameter and Oriented Nanorod-Thin Film Structure for Solar Cell Application: A Device Proposal,” Solar Energy Material and Solar Cells, Vol. 85, No. 1, 2005, pp. 107-113.
[16] Y. Terai, S. Kuroda, K. Takita, T. Okuno and Y. Masumoto, “Zero-Dimensional Excitonic Properties of Self-Organized Quantum Dots of CdTe Grown by Molecular Beam Epitaxy,” Applied Physics Letters, Vol. 73, No. 25, 1998, Article ID. 3757. doi:10.1063/1.122885
[17] H. Zhang, L. P. Wang, H. M. Xiong, L. H. Hu, B. Yang and W. Li, “Hydrothermal Synthesis for High-Quality CdTe Nanocrystals,” Advanced Materials, Vol. 15, No. 20, 2003, pp. 1712-1715. doi:10.1002/adma.200305653
[18] S. F. Wuister, I. Swart, F. Van Driel, S. G. Hickey and C. D. Donega, “Highly Luminescent Water-Soluble CdTe Quantum Dots,” Nano Letters, Vol. 3, No. 4, 2003, pp. 503-507. doi:10.1021/nl034054t
[19] Y. Bae, N. Myung and A. J. Bard, “Electrochemistry and Electrogenerated Chemiluminescence of CdTe Nanoparticles,” Nano Letters, Vol. 4, No. 6, 2004, pp. 1153-1161. doi:10.1021/nl049516x
[20] X. G. Peng, L. Manna, W. D. Yang, J. Wickham, E. Scher, A. Kadavanich and A. P. Alivisatos, “Shape Control of CdSe Nanocrystals,” Nature, Vol. 404, No. 6773, 2000, pp. 59-61.
[21] P. D. Cozzoli, T. Pellegrino and L. Manna, “Synthesis Properties and Perspectives of Hybrid Nanocrystalstructures,” Chemical Society Reviews, 2006, Vol. 35, 2006, pp. 1195-1208.
[22] Y. Kang, N.-G. Park and D. Kim, “Hybrid Solar Cells with Vertically Aligned CdTe Nanorods and a Conjugated Polymer,” Applied Physics Letters, Vol. 86, No. 11, 2005, pp. 113101-113103.
[23] L. Manna, D. J. Milliron, A. Meisel, E. C. Scher and A. P. Alivisatos, “Controlled growth of Tetrapod-Branchedinorganic Nanocrystals,” Nature Materials, Vol. 2, 2003, pp. 382-385.
[24] L. Manna, E. C. Scher and A. P. Alivisatos, “Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals,” Journal of American Chemical Society, Vol. 122, No. 51, 2000, pp. 12700-12706. doi:10.1021/ja003055+
[25] D. J. Milleron, I. Gur and A. P. Alivisatos, “Hybrid Organic—Nanocrystal Solar Cells,” MRS Bulletin, Vol. 30, No. 1, 2005, pp. 41-44. doi:10.1557/mrs2005.8
[26] S. Neretina, R. A. Hughes, G. A. Devenyi, N. V. Sochinskii, J. S. Preston and P. Mascher, “The Role of Substrate Surface Alteration in the Fabrication of Vertically Aligned CdTe Nanowires,” Nanotechnology, Vol. 19, No. 18, 2008, Article ID. 185601. doi:10.1088/0957-4484/19/18/185601
[27] N. C. Greenham, X. Peng and A. P. Alivisatos, “Charge Separation and Transport in Conjugated-Polymer/Semiconductor-Nanocrystal Composites Studied by Photoluminescence Quenching and Photoconductivity,” Physical Review B, Vol. 54, 1996, pp. 17628-17637. doi:10.1103/PhysRevB.54.17628
[28] D. S. Xu, D. P. Chen, Y. J. Xu, X. S. Shi, G. L. Guo, L. L. Gui and Y. Q. Tang, “Preparation of II-VI Group Semiconductor Nanowire Arrays by dc Electrochemical Deposition in Porous Aluminum Oxide Templates,” Pure and Applied Chemistry, Vol. 72, No. 1-2, 2000, pp. 127-135. doi:10.1351/pac200072010127
[29] S. Neretina, R. A. Hughes, J. F. Britten, N. V. Sochinskii, J. S. Preston and P. Mascher, “Vertically Aligned Wurtzite CdTe Nanowires Derived from a Catalytically Driven Growth Mode,” Nanotechnology, Vol. 18, No. 27, 2007, Article ID. 275301. doi:10.1088/0957-4484/18/27/275301
[30] J. Li, X. Hong, D. Li, K. Zhao, L. Wang , H. Z. Wang, Z. L. Du, J. H. Li, Y. B. Bai and T. J. Li, “Mixed Ligand System of Cysteine and Thioglycolic Acid Assisting in the Synthesis of Highly Luminescent Water-Soluble CdTe Nanorods,” Chemical Communications, 2004, pp. 1740-1741.
[31] W. Nie, J. B. He, N. N. Zhao and X. L. Ji, “A Controllable Synthesis of Multi-Armed CdTe Nanorods,” Nanotechnology, Vol. 17, No. 4, 2006, Article ID. 1146. doi:10.1088/0957-4484/17/4/050
[32] X. N. Wang, J. Wang, M. J. Zhou, H. Wang, X. D. Xio and Q. Li, “CdTe Nanorods Formation via Nanoparticle self-Assembly by Thermal Chemistry Method,” Journal of Crystal Growth, Vol. 5, No. 16-17, 2010, pp. 3210-2314.
[33] T. Trindade and P. O’Brien, “A Single Source Approach to the Synthesis of CdSe Nanocrystallites,” Advanced Materials, Vol. 8, No. 2, 1996, pp. 161-163.
[34] M. D. Milton, S. Khan, J. D. Singh, V. Mishra and B. L. Khandelwal, “A Facile Access to Chalcogen and Dichalcogen Bearing Dialkylamines and Diols,” Tetrahedron Letters, Vol. 46, No. 5, 2005, pp. 755-758.
[35] M. D. Milton, J. Singh, J. D. Singh, B. L. Khandelwal and R. J. Butcher, “Design, Synthesis and Structural Aspects of NH2(CH2)nE(CH2)nNH2 (n=2 or 3; E=Se or Te) N2Se or N2Te Donors and its Complexes with Group 12 Metals,” Phosphorus, Sulfur, and Silicon and the Related Elements, Vol. 172, No. 1, 2001, pp. 239-246.
[36] D. Selvakumar, R. Singh, M. Nasim, G. N. Mathur, “Synthesis of Bis(alkyltelluro) Methanes and Their Complexation with Cadmium(II),” Phosphorus, Sulfur, and Silicon and the Related Elements, Vol. 172, No. 247, 2001, pp. 501-513.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.